put model on gpus

    # put model on gpus
    find_unused_parameters = cfg.get('find_unused_parameters', True)
    # Sets the `find_unused_parameters` parameter in
    # torch.nn.parallel.DistributedDataParallel
    model = MMDistributedDataParallel(
        model.cuda(),
        device_ids=[torch.cuda.current_device()],
        broadcast_buffers=False,
        find_unused_parameters=find_unused_parameters)

扮演的功能角色是?对这个网络模型调用tudui.cuda()?功能等价?

从这段代码来看,它的主要功能是将模型放置到 GPU 上,并启用分布式数据并行(DDP)训练。让我们具体分析一下:

  1. model = MMDistributedDataParallel(model.cuda(), ...):

    • 这一步将模型迁移到 GPU 上,通过调用 model.cuda() 实现。
  2. 使用 MMDistributedDataParallel 类进行包装:

    • MMDistributedDataParallel 是一个扩展自 PyTorch 原生的 DistributedDataParallel 类的自定义实现。
    • 它提供了额外的功能和配置项,比如 broadcast_buffers 和 find_unused_parameters

所以这段代码的主要作用是:

  1. 将模型迁移到 GPU 上。
  2. 启用分布式数据并行训练,以利用多个 GPU 提高训练效率。
  3. 根据配置控制一些 DDP 相关的参数,如是否查找未使用的参数。

与直接使用 model.cuda() 相比,这段代码提供了更多的灵活性和配置选项。它可以让我们更好地控制模型在分布式训练环境下的行为。

所以,这段代码的功能角色是"将模型放到GPU上并启用分布式数据并行训练"。它与直接调用 model.cuda() 不完全等价,因为它提供了更丰富的功能和配置选项。

如果单卡怎么办?

如果是单卡情况下,使用 MMDistributedDataParallel 可能会产生一些多余的开销和配置,因为它是针对分布式训练场景设计的。在单卡情况下,可以考虑以下两种方式:

  1. 直接使用 nn.DataParallel:
    model = nn.DataParallel(model.cuda())

    nn.DataParallel 是 PyTorch 提供的用于单机多卡训练的工具,它可以自动将模型复制到多个GPU上并进行并行计算。在单卡情况下,它会将模型放到可用的单个GPU上。这种方式比 MMDistributedDataParallel 更简单、更轻量。

如果你确定只需要在单个GPU上训练,直接使用 model.cuda() 将模型迁移到GPU上即可,不需要使用任何并行包装。这种方式最简单直接,不会有额外的开销。

总之,在单卡场景下,相比使用 MMDistributedDataParallel,使用 nn.DataParallel 或者直接 model.cuda() 会更加合适和高效。选择哪种方式取决于具体的需求和场景。

pyskl/pyskl/apis/train.py at main · kennymckormick/pyskl · GitHub

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值