Defect Detection

for 架baseline - 调研已有道路缺陷检测的综述、18年后Trans.和顶会文章。建议从新的往前调研,了解目前的sota方法的做法、下载主流的数据集。总结出一个性能汇总统计表,里面包含了现有同赛道方法在不同数据集中的性能指标(例如:mAP、IoU、F1 Score、Precision、Recall,这里指标有点多,现有方法用什么指标 show多少指标我们直接follow就ok)。同时标明方法发表在什么刊、时间和是否开源了代码和模型。

1、Road Surface Defect Detection—From Image-Based to Non-Image-Based: A Survey

(1).数据集

a.Crack 500

b. CrackForest

c.German AsphaltPavement Distress

d.CrackTree: Automatic crack detection from pavement images(未公开)

e.DeepCrack

f. NHA12D

g.Pothole-600 Dataset

2.Pavement Defect Detection With Deep Learning: A Comprehensive Survey

评估

在这里插入图片描述

在这里插入图片描述

a.A novel hybrid approach for crack detection

期刊: PR(2020)
数据集: 网上和公开数据整理出来的,
性能指标: Precision Recall F 1 -score MPFR FPFR Time ,论文有提到指标。

在这里插入图片描述

算法比较 :Faster R-CNN /Vgg16, Faster R-CNN w/ResNet101, YOLO_v3 , SSD
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值