LeetCode-56. 合并区间

题目

给出一个区间的集合,请合并所有重叠的区间。

示例

示例 1:

输入: [[1,3],[2,6],[8,10],[15,18]]
输出: [[1,6],[8,10],[15,18]]
解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

输入: [[1,4],[4,5]]
输出: [[1,5]]
解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。

解题思路

将列表中的区间按照左端点升序排序
当前区间的右端点小于下一区间的左端点,那么它们不会重合,直接将这个区间加入结果集的末尾
当前区间的右端点大于等于下一区间的左端点,出现重合,合并区间

代码实现


```class Solution {
    public int[][] merge(int[][] intervals) {
       if (intervals.length == 0) {
            return intervals;
        }
        //将列表中的区间按照左端点升序排序
        Arrays.sort(intervals, new Comparator<int[]>() {

            @Override
            public int compare(int[] o1, int[] o2) {
                return o1[0]-o2[0];
            }
        });
        List<int[]> ans = new ArrayList<>();
        int[] current = intervals[0];
        for (int[] interval : intervals) {
            //当前区间的右端点小于下一区间的左端点,那么它们不会重合,直接将这个区间加入结果集的末尾
            if (current[1] < interval[0]) {
                ans.add(current);
                current = interval;
            }else{
            //当前区间的右端点大于等于下一区间的左端点,出现重合,合并区间
                current[1] = Math.max(current[1], interval[1]);
            }
        }
        //最后一个区间
        ans.add(current);
        return ans.toArray(new int[0][]);

    }
}

复杂度分析

  • 时间复杂度: O ( log ⁡ n ) O(\log n) O(logn),其中 n n n 为区间的数量。除去排序的开销,我们只需要一次线性扫描,所以主要的时间开销是排序的 O ( n log ⁡ n ) O(n\log n) O(nlogn)

  • 空间复杂度: O ( log ⁡ n ) O(\log n) O(logn),其中 n n n 为区间的数量。这里计算的是存储答案之外,使用的额外空间。 O ( log ⁡ n ) O(\log n) O(logn) 即为排序所需要的空间复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值