写在前面
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。 //二维
//一维优化↓
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
即方程为f[j] = max(f[j - w[i]] + v[i], f[j]);
题目
描述 Description
贝茜在珠宝店闲逛时,买到了一个中意的手镯。很自然地,她想从她收集的
N(1 <= N <= 3,402)块宝石中选出最好的那些镶在手镯上。对于第i块宝石,它
的重量为W_i(1 <= W_i <= 400),并且贝茜知道它在镶上手镯后能为自己增加的
魅力值D_i(1 <= D_i <= 100)。由于贝茜只能忍受重量不超过M(1 <= M <=
12,880)的手镯,她可能无法把所有喜欢的宝石都镶上。
于是贝茜找到了你,告诉了你她所有宝石的属性以及她能忍受的重量,希望
你能帮她计算一下,按照最合理的方案镶嵌宝石的话,她的魅力值最多能增加多
少。
输入格式 Input Format
第1行: 2个用空格隔开的整数:N 和 M
第2…N+1行: 第i+1行为2个用空格隔开的整数:W_i、D_i,分别为第i块宝石
的重量与能为贝茜增加的魅力值
输出格式 Output Format
第1行: 输出1个整数,表示按照镶嵌要求,贝茜最多能增加的魅力值
样例输入 Sample Input
4 6
1 4
2 6
3 12
2 7
输入说明:
贝茜收集了4块宝石,她能忍受重量最大为6的手镯。
样例输出 Sample Output
23
输出说明:
贝茜把除了第二块宝石的其余所有宝石都镶上手镯,这样她能增加
4+12+7=23的魅力值,并且所有宝石的重量为1+2+3 <= 6,同样符合要求。
CODE
#include <bits/stdc++.h>
#define up(i, a, b) for(register int i = a; i <= b; ++i)
#define down(i, a, b) for(register int i = a; i >= b; i--)
using namespace std;
const int MAXX = 5e5 + 10;
typedef long long ll;
inline int read() {
int s = 0, w = 1;
char ch = getchar();
while (!isdigit(ch)) { if(ch == '-') w = -1; ch = getchar(); }
while (isdigit(ch)) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
return s * w;
}
int n, m;
int w[MAXX], v[MAXX], f[MAXX];
int main() {
memset(f, 0, sizeof(f));
n = read(); m = read();
up(i, 1, n) {
w[i] = read(); v[i] = read();
}
up(i, 1, n) {
down(j, m, w[i]) {
f[j] = max(f[j], f[j - w[i]] + v[i]);
}
}
printf("%d\n", f[m]);
return 0;
}