初探无监督学习GAN

GAN的目的
一些生成模型可以从模型的分布中生成样本,GAN也是生成模型的一种,主要用于通过分布生成样本。
你可能想知道为什么生成模型值得学习,尤其在了解到生成模型只能够制造数组而不是提供一个预测的密度函数更是如此。
学习生成模型的目的如下:

  • 生成样本,这是最直接的理由。
  • 训练并不包含最大似然估计。
  • 由于生成器不会看到训练数据,过拟合的风险更低。
  • GAN十分擅长捕获模型的分布。

GAN的组成

1、生成器
生成器网络以随机的噪声作为输入并试图生成样本数据。
2、判别器
判别器网络以真是数据或者生成数据作为输入,并试图预测当前输入是真实数据还是生成数据。

GAN的实现
选择个helloworld级别的来简单根据GAN的定义来实现生成器和判定器网络,采用tensorflow框架搭建两层神经网络,实现minist数据集的生成和判定。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from tensorflow.examples.tutorials.mnist import input_data

def xavier_init(size):
    input_dim = size[0]
    xavier_variance = 1. / tf.sqrt(input_dim/2.)
    return tf.random_normal(shape=size, stddev=xavier_variance)

def plot(samples):
    fig = plt.figure(figsize=(4, 4))
    gs = gridspec.GridSpec(4, 4)
    gs.update(wspace=0.05, hspace=0.05)

    for i, sample in enumerate(samples):
        ax = plt.subplot(gs[i])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        plt.imshow(sample.reshape(28, 28), cmap='Greys_r')

    return fig

# Random noise setting for Generator
Z = tf.placeholder(tf.float32, shape=[None, 100], name='Z')

#Generator parameter settings
G_W1 = tf.Variable(xavier_init([100, 128]), name='G_W1')
G_b1 = tf.Variable(tf.zeros(shape=[128]), name='G_b1')
G_W2 = tf.Variable(xavier_init([128, 784]), name='G_W2')
G_b2 = tf.Variable(tf.zeros(shape=[784]), name='G_b2')
theta_G = [G_W1, G_W2, G_b1, G_b2]

#Input Image MNIST setting for Discriminator [28x28=784]
X = tf.placeholder(tf.float32, shape=[None, 784], name='X')

#Discriminator parameter settings
D_W1 = tf.Variable(xavier_init([784, 128]), name='D_W1')
D_b1 = tf.Variable(tf.zeros(shape=[128]), name='D_b1')
D_W2 = tf.Variable(xavier_init([128, 1]), name='D_W2')
D_b2 = tf.Variable(tf.zeros(shape=[1]), name='D_b2')

theta_D = [D_W1, D_W2, D_b1, D_b2]

# Generator Network
def generator(z):
    G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
    G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
    G_prob = tf.nn.sigmoid(G_log_prob)

    return G_prob

# Discriminator Network
def discriminator(x):
    D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
    D_logit = tf.matmul(D_h1, D_W2) + D_b2
    D_prob = tf.nn.sigmoid(D_logit)

    return D_prob, D_logit

G_sample = generator(Z)

D_real, D_logit_real = discriminator(X)
D_fake, D_logit_fake = discriminator(G_sample)

# Loss functions from the paper
D_loss = -tf.reduce_mean(tf.log(D_real) + tf.log(1. - D_fake))
G_loss = -tf.reduce_mean(tf.log(D_fake))


# Update D(X)'s parameters
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)

# Update G(Z)'s parameters
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)

def sample_Z(m, n):
    return np.random.uniform(-1., 1., size=[m, n])

batch_size = 128
Z_dim = 100

sess = tf.Session()
sess.run(tf.global_variables_initializer())

mnist = input_data.read_data_sets('MNIST/', one_hot=True)

if not os.path.exists('output/'):
    os.makedirs('output/')

i = 0

for itr in range(1000000):
    if itr % 1000 == 0:
        samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})

        fig = plot(samples)
        plt.savefig('output/{}.png'.format(str(i).zfill(3)), bbox_inches='tight')
        i += 1
        plt.close(fig)

    X_mb, _ = mnist.train.next_batch(batch_size)

    _, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Z: sample_Z(batch_size, Z_dim)})
    _, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z: sample_Z(batch_size, Z_dim)})

    if itr % 1000 == 0:
        print('Iter: {}'.format(itr))
        print('D loss: {:.4}'. format(D_loss_curr))
        print('G_loss: {:.4}'.format(G_loss_curr))
        print()

GAN的应用

  • 利用CycleGAN进行图像转换。
  • 利用StackGAN自动从文本中制作逼真的图像。
  • 探索式GAN(DiscoveryGAN,DiscoGAN)进行图像风格转换。
  • 利用SRGAN通过与训练模型提升图像的品质,制作高清晰度的图像。
  • 通过特征成逼真图像:设想根据人的描述来生成他的照片,然后进行图像搜素查找。

GAN的挑战与问题
训练GAN的目的是生成器网络G(z)和判别器网络D(z)相互竞争达到最优,更准确的说是到纳什平衡的一个过程。

  • 启动和初始化的问题
  • 模型坍塌
  • 计数方面的问题
  • 角度方面的问题
  • 全局结构方面的问题

优化的方向

  • 特征匹配
  • 小批量
  • 历史平均
  • 单侧标签平滑
  • 输入规范化
  • 批规范化
  • 利用Relu和MaxPool避免稀疏梯度
  • 优化器和噪声

具体想了解更多可以根据这些去详细查看更多的细节,刚刚接触,先整体后局部。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值