逻辑回归损失函数

生成与判别

样本不均衡时,生成模型出错

生成模型的好处(一般认为判别优于生成)

softmax多分类


逻辑回归的局限(只用于二分类)
把原始坐标转换到(0,0)和(1,1)的距离(特征转换)

由此引出深层概念

本文探讨了逻辑回归损失函数在处理样本不均衡时的问题,并分析了生成模型与判别模型的区别及优劣。此外还介绍了softmax多分类逻辑回归的应用局限,以及如何通过特征转换改善模型性能。
逻辑回归损失函数

生成与判别

样本不均衡时,生成模型出错

生成模型的好处(一般认为判别优于生成)

softmax多分类


逻辑回归的局限(只用于二分类)
把原始坐标转换到(0,0)和(1,1)的距离(特征转换)

由此引出深层概念

426

被折叠的 条评论
为什么被折叠?