题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
解答
对于第一行 dp[0][j],或者第一列 dp[i][0],由于都是在边界,所以只能为 1
dp[i][j] 表示到达( i, j )处最多有dp[i][j]路径
由于机器人每次只能向下或者向右移动一步,那么:
每个位置的路径 = 该位置左边的路径 + 该位置上边的路径
于是可以得出动态方程:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
for(int i = 0; i < m; i++) dp[i][0] = 1;
for(int j = 0; j < n; j++) dp[0][j] = 1;
for(int i = 1; i < m; i++)
{
for(int j = 1; j < n; j++)
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
return dp[m-1][n-1];
}
};