02 LeetCode:不同路径(动态规划)

这篇博客探讨了一种使用动态规划算法来计算机器人从网格左上角到达右下角的不同路径数量的方法。初始边界条件被设定为1,然后通过迭代更新每个位置的路径数,即当前位置的路径等于其上一位置和左一位置的路径数之和。最终返回的是dp矩阵的最后一个元素,即目标位置的路径数。
摘要由CSDN通过智能技术生成

题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?

在这里插入图片描述

解答

对于第一行 dp[0][j],或者第一列 dp[i][0],由于都是在边界,所以只能为 1
dp[i][j] 表示到达( i, j )处最多有dp[i][j]路径
由于机器人每次只能向下或者向右移动一步,那么:
每个位置的路径 = 该位置左边的路径 + 该位置上边的路径
于是可以得出动态方程:
dp[i][j] = dp[i-1][j] + dp[i][j-1]

class Solution {
public:
    int uniquePaths(int m, int n) {
        int dp[m][n];
        for(int i = 0; i < m; i++) dp[i][0] = 1;
        for(int j = 0; j < n; j++) dp[0][j] = 1;
        for(int i = 1; i < m; i++)
        {
            for(int j = 1; j < n; j++)
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
        }
        return dp[m-1][n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值