线性基的一点理解

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_34531807/article/details/79843041

1、线性基:

       若干数的线性基是一组数a1,a2,...an,其中ax的最高位的1在第x位。

       通过线性基中元素xor出的数的值域与原来的数xor出数的值域相同。

2、线性基的构造法:

       对每一个数p从高位到低位扫,扫到第x位为1时,若ax不存在,则ax=p并结束此数的扫描,否则令p=p xor ax。

	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		for(int j=55;j>=0;j--)
		{
			if(!(a[i]>>j))continue;
			if(!p[j])
			{
				p[j]=a[i];
				break;
			}
			a[i]^=p[j];
		}
	}

3、查询:

       用线性基求这组数xor出的最大值:从高往低扫ax,若异或上ax使答案变大,则异或。

	for(int i=55;i>=0;i--)
		if((ans^p[i])>ans)ans=ans^p[i];

4、判断:

       用线性基求一个数能否被xor出:从高到低,对该数每个是1的位置x,将这个数异或上ax(注意异或后这个数为1的位置和原数就不一样了),若最终变为0,则可被异或出。当然需要特判0(在构造过程中看是否有p变为0即可)。例子:(11111,10001)的线性基是a5=11111,a4=01110,要判断11111能否被xor出,11111 xor a5=0=0,则这个数后来就没有是1的位置了,最终得到结果为0,说明11111能被xor出。

       很多情况下,只有有关异或运算和求最值,就可以用到线性基。线性基有很多很好的性质,比如说如果有很多个数,我们可以构出这些数的线性基,那么这个线性基可以通过互相xorxor,能够构出原来的数可以相互xorxor构出的所有的数。所以可以大大减少判断的时间和次数。同时线性基的任何一个非空子集都不会使得其xorxor和为0,证明也很简单,反证法就可以说明。这个性质在很多题目中可以保证算法合法性。

展开阅读全文

没有更多推荐了,返回首页