TF-IDF原理
解释:
TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。
TF意思是词频(Term Frequency),
IDF意思是逆文本频率指数(Inverse Document Frequency)。
使用场景:
用于关键词提取
代码实现
import jieba.analyse as analyse
import pandas as pd
df = pd.read_csv("./technology_news.csv", encoding='utf-8')
df = df.dropna()
lines=df.content.values.tolist()
content = "".join(lines)
print(" ".join(analyse.extract_tags(content, topK=30, withWeight=False, allowPOS=())))
输出结果:
用户 2016 互联网 手机 平台 人工智能 百度 2017 智能 技术 数据 360 服务 直播
产品 企业 安全 视频 移动 应用 网络 行业 游戏 机器人 电商 内容 中国 领域 通过 发展
注:
import jieba.analyse
jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
sentence 为待提取的文本
topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
withWeight 为是否一并返回关键词权重值,默认值为 False
allowPOS 仅包括指定词性的词,默认值为空,即不筛选