自然语言处理-TF-IDF

TF-IDF原理

解释:
TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。
TF意思是词频(Term Frequency),
IDF意思是逆文本频率指数(Inverse Document Frequency)。
使用场景:
用于关键词提取

代码实现

import jieba.analyse as analyse
import pandas as pd
df = pd.read_csv("./technology_news.csv", encoding='utf-8')
df = df.dropna()
lines=df.content.values.tolist()
content = "".join(lines)
print("  ".join(analyse.extract_tags(content, topK=30, withWeight=False, allowPOS=())))
输出结果:
用户  2016  互联网  手机  平台  人工智能  百度  2017  智能  技术  数据  360  服务  直播 
产品  企业  安全  视频  移动  应用  网络  行业  游戏  机器人  电商  内容  中国  领域  通过  发展

注:
import jieba.analyse
jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
sentence 为待提取的文本
topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
withWeight 为是否一并返回关键词权重值,默认值为 False
allowPOS 仅包括指定词性的词,默认值为空,即不筛选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值