# -*- coding: utf-8 -*-
# @Time : 2018/1/17 16:37
# @Author : Zhiwei Zhong
# @Site :
# @File : Numpy_Pytorch.py
# @Software: PyCharm
import torch
import numpy as np
np_data = np.arange(6).reshape((2, 3))
# numpy 转为 pytorch格式
torch_data = torch.from_numpy(np_data)
print(
'\n numpy', np_data,
'\n torch', torch_data,
)
'''
numpy [[0 1 2]
[3 4 5]]
torch
0 1 2
3 4 5
[torch.LongTensor of size 2x3]
'''
# torch 转为numpy
tensor2array = torch_data.numpy()
print(tensor2array)
"""
[[0 1 2]
[3 4 5]]
"""
# 运算符
# abs 、 add 、和numpy类似
data = [[1, 2], [3, 4]]
tensor = torch.FloatTensor(data) # 转为32位浮点数,torch接受的都是Tensor的形式,所以运算前先转化为Tensor
print(
'\n numpy', np.matmul(data, data),
'\n torch', torch.mm(tensor, tensor) # torch.dot()是点乘
)
'''
numpy [[ 7 10]
[15 22]]
torch
7 10
15 22
[torch.FloatTensor of size 2x2]
'''
pytorch和Numpy的区别以及相互转换
最新推荐文章于 2024-05-05 11:20:56 发布