【无标题】

本文探讨了深度学习中两种重要的学习率策略:余弦退火学习率和多步学习率。余弦退火学习率通过模拟余弦函数的周期性来调整学习率,而多步学习率则是在预设的多个阶段降低学习率,以优化模型训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c o s i n e cosine cosine learning rate:

from timm.optim import create_optimizer_v2, optimizer_kwargs
from timm.scheduler import create_scheduler
from torch import nn
from matplotlib import pyplot as plt
%matplotlib inline
class arg:
    opt = 'sgd'
    lr = 0.01
    weight_decay = 0
    momentum = 0.9
    epochs = 100
    sched = 'cosine'
    min_lr = 0.002
    warmup_lr = 0.005
    warmup_epochs = 10
    cooldown_epochs = 50

model = nn.Conv2d(1, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值