MIT线性代数第五讲-转置-置换-向量空间R

置换矩阵

  • 用来完成行交换的矩阵。
  • n阶矩阵一共有n!个置换矩阵。
  • 所有置换矩阵均可逆,并且 P1=PT P − 1 = P T

转置和对称矩阵

  • 对称矩阵即 A=AT A = A T 的矩阵。
  • 所有矩阵R乘以 RT R T 便可得到一个对称矩阵。
    (RTR)T=(RT)(RT)T=RTR ( R T R ) T = ( R T ) ( R T ) T = R T R ,所以 RTR R T R 是对称矩阵。

向量空间

  • 向量空间
  • 子空间
向量空间:
  • 向量张成的空间,并且对加法和数乘封闭。
  • Rn R n :所有有n个分量的列向量组成的空间。
子空间:
  • 取某向量空间的部分空间,这部分中的向量不管是对加法还是数乘,结果仍然在此部分空间内,这就是子空间。
  • 一个向量空间本身就是让自己最大的子空间。
  • 零向量是所有实空间的子空间,他总是构成最小的子空间。
    例1:利用矩阵构造子空间:
    124231 [ 1 2 2 3 4 1 ]

    可以看出列向量 R3 ∈ R 3 ,这两列的所有线性组合构成可该矩阵生成的子空间。又叫列空间C(A)。
    例2:假设有两个子空间P和L,问 PL P ∪ L PL P ∩ L 是不是子空间?
    对于 PL P ∩ L :对任意向量 w,vPL w , v ∈ P ∩ L ,可知 w,vP w , v ∈ P w,vL w , v ∈ L ,又P和L分别是子空间,所以w和v在P和L中对加法和数乘是封闭的。那么 w+vP,w+vL w + v ∈ P , w + v ∈ L ,所以 w+vPL w + v ∈ P ∩ L ,同理可知, PL P ∩ L 对数乘同样封闭,所以 PL P ∩ L 构成子空间。
    对于 PL P ∪ L ,假设P和L分别是二维空间中的x轴和y轴,他们满足子空间的定义,任取向量 [0,1]TL,[1,0]TP [ 0 , 1 ] T ∈ L , [ 1 , 0 ] T ∈ P ,因为 [1,1]TPL [ 1 , 1 ] T ∉ P ∪ L ,所以 PL P ∪ L 不是子空间。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值