Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
[[1,3,1], [1,5,1], [4,2,1]]Given the above grid map, return
7
. Because the path 1→3→1→1→1 minimizes the sum.
原来是动态规划,AC代码如下
class Solution {
public:
int minPathSum(vector<vector<int>>& grid){
int m = grid.size();
int n = grid[0].size();
if (m == 1 && n == 1) return grid[0][0];
vector<vector<int>> Paths(m, vector<int>(n, 0));
Paths[0][0] = grid[0][0];
for (int i = 1; i < m; ++i)
{
Paths[i][0] = Paths[i-1][0] + grid[i][0];
}
for (int j = 1; j < n; ++j)
{
Paths[0][j] = Paths[0][j-1] + grid[0][j];
}
for (int i = 1; i < m; i++)
for (int j = 1; j < n; j++)
{
Paths[i][j] =(min( Paths[i - 1][j] , Paths[i][j - 1]) )+ grid[i][j];
}
return Paths[m - 1][n - 1];
}
};
用宽搜超时了,超时代码如下
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
if (m == 1 && n == 1) return grid[0][0];
int next[2][2] = { { 0,1 }, { 1, 0 } }; // 往右走 往下走
vector <vector<int> > ans(m, vector<int>(n, 0));
struct node
{
int x;
int y;
int num;
};
deque <node> Deque; //队列;
int head, tail;
int total = 10000000000;
head = 0; tail = 1;
node begin , temp , newTemp ;
begin.x = 0; begin.y = 0; begin.num = grid[0][0];
Deque.push_back(begin);
while (!Deque.empty())
{
temp = Deque[0];
Deque.pop_front();
for (int i = 0; i < 2; i++)
{
newTemp.x = temp.x + next[i][0];
newTemp.y = temp.y + next[i][1];
if (newTemp.x <= m - 1 && newTemp.y <= n - 1)
newTemp.num = temp.num + grid[newTemp.x][newTemp.y];
if (newTemp.x == m - 1 && newTemp.y == n - 1)
{
total = min(total, newTemp.num);
}
else
{
if (newTemp.x <= m - 1 && newTemp.y <= n - 1)
Deque.push_back(newTemp);
}
}
}
return total;
}
int min(int a, int b)
{
return a > b ? b : a;
}
};