64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example 1:

[[1,3,1],
 [1,5,1],
 [4,2,1]]
Given the above grid map, return  7 . Because the path 1→3→1→1→1 minimizes the sum.

原来是动态规划,AC代码如下

class Solution {
public:
	 int minPathSum(vector<vector<int>>& grid){
		 	int m = grid.size();
		 	int n = grid[0].size();
			if (m == 1 && n == 1) return grid[0][0]; 
			vector<vector<int>>  Paths(m, vector<int>(n, 0));
			Paths[0][0] = grid[0][0];
			for (int i = 1; i < m; ++i)
			{
				Paths[i][0] = Paths[i-1][0] + grid[i][0];
			}
			for (int j = 1; j < n; ++j)
			{
				Paths[0][j] = Paths[0][j-1] + grid[0][j];
			}

			for (int i = 1; i < m; i++)
				for (int j = 1; j < n; j++)
				{
				Paths[i][j] =(min( Paths[i - 1][j] , Paths[i][j - 1]) )+ grid[i][j];
				}

			return Paths[m - 1][n - 1];
		}
};


 用宽搜超时了,超时代码如下

class Solution {
public:
	int minPathSum(vector<vector<int>>& grid) {
		int m = grid.size();
		int n = grid[0].size();
	if (m == 1 && n == 1) return grid[0][0];
		int next[2][2] = { { 0,1 }, { 1, 0 } };  // 往右走 往下走
		vector <vector<int> >  ans(m, vector<int>(n, 0));
		struct  node  
		{
			int x; 
			int y;
			int num; 
		};
		deque <node> Deque; //队列;
		int head, tail; 
		int total = 10000000000;
		head = 0; tail = 1;
		node begin , temp , newTemp ; 
		begin.x = 0; begin.y = 0; begin.num = grid[0][0];
		Deque.push_back(begin);  
	
		while (!Deque.empty())
		{
			temp = Deque[0];
			 Deque.pop_front();
			for (int i = 0; i < 2; i++)
			{
				newTemp.x = temp.x + next[i][0];
				newTemp.y = temp.y + next[i][1];
				if (newTemp.x <= m - 1 && newTemp.y <= n - 1)
				newTemp.num = temp.num + grid[newTemp.x][newTemp.y];
				if (newTemp.x == m - 1 && newTemp.y == n - 1)
				{
					total = min(total, newTemp.num);
				}
				else
				{
					if (newTemp.x <= m - 1 && newTemp.y <= n - 1)
						Deque.push_back(newTemp);
				}	
			}
		
		}
		return total;

	}
	int min(int a, int b)
	{
		return a > b ? b : a;
	}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值