卷积神经网络的分类层-softmax和sigmoid

卷积神经网络的分类层-softmax和sigmoid

1. softmax

在学习一些卷积网络的模型时,我们经常看到模型最后有一个softmax层,这个层的主要作用就是输出物体是各个类的概率,接下来我们就来看一下其计算公式:
在这里插入图片描述
如上图所示,在全连接层得到了两个结果(有两个类别) L 2 _ 1 L_{2\_1} L2_1 L 2 _ 2 L_{2\_2} L2_2,为了公式方便书写我们就把它们看成是 y 1 y_1 y1 y 2 y_2 y2。我们想要得到的是各个类别的概率。这里需要注意在softmax层所有输出的概率之和为1。因此我们就要用到一个计算公式:
s i = e y i ∑ j e y j s_i = \frac{e^{y_i}}{\sum_je^{y_j}} si=jeyjeyi
也就得到
s 1 = e y 1 e y 1 + e y 2 ; s 2 = e y 2 e y 1 + e y 2 s_1 = \frac{e^{y_1}}{e^{y_1}+e^{y_2}};s_2 = \frac{e^{y_2}}{e^{y_1}+e^{y_2}} s1=ey1+ey2ey1;s2=ey1+ey2ey2

2. sigmoid

sigmoid输出,每个节点之间互不相干。
在这里插入图片描述
计算公式:
f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1
sigmoid函数主要针对二分类问题,它可以不满足概率分布。当输入一张图片让你判断是否为猫的时候,那么结果只有两种,这是满足概率分布的;如果输入一张图片,让你判断是动物还是猫,那么就不满足概率分布了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值