干货|Google ads谷歌广告投放详细步骤与技巧

本文详述了跨境电商和独立站卖家如何通过谷歌广告获取流量,包括开设帐户、设置广告系列、出价策略、定位受众、广告创作以及提升广告效果的四个技巧。
摘要由CSDN通过智能技术生成

对于跨境电商、独立站运营的卖家来说,谷歌广告投放是必备的流量拓展来源,但是在投入运营之前,你需要完整了解谷歌广告投放详细步骤,以为你丝滑地进行有效投放做好基础,下面为大家整理具体的谷歌投放技巧与步骤,感兴趣的话请看下去!

975cbf381f2ccb76cbd50aeb824c05fb.jpeg

一、投放详细步骤

1. 开设 Google Ads 帐户

开设 Google Ads 帐户并没有想象中的那么难,但是养好一个好账号比较有难度。你可以打开Maskfog指纹浏览器,模拟全新的唯一的指纹环境与独享IP以运营你的谷歌账号,适合长期稳定地进行投放,防止因为设备问题导致封号。

6d14804c8ff18c8e6b0c9fec14ad4fc5.jpeg

  • 输入您的公司名称和网站 URL
  • 关联任何现有的 Google 拥有的帐户,例如 YouTube 频道和/或“Google 我的商家
  • 个人资料
  • 填写账单和付款信息
2. 创建广告系列

点击Google Ads 主仪表板顶部的“新广告系列” 。

95434050915ad79183c0e35842c64f35.jpeg

为您的营销活动选择一个目标,然后点击“继续”。

2421e4f992d3db491ba652682764f225.jpeg

在本例中,对于网络流量目标,我可以从以下 Google Ads 格式中进行选择:

c1f8f2a5a46d73b0795c8e890567d306.jpeg

3.设定出价策略

确定目标和广告格式后,需要设置出价,您想要花费多少以及您想要优化哪些预算(例如转化次数、潜在客户、流量等)。

415db0768b4856a259d7e46519808730.jpeg

您可以指定每次操作的目标成本,但我建议新用户不要选中此选项,让 Google 尽可能优化您的出价。

4. 瞄准你的受众

您可以在设置在哪里可以找到您的目标用户。选择目标所在的位置和/或语言,以及可选的其他兴趣类别。高级用户可以上传自定义受众、微调人口统计数据等。

1ab97b6a4d0a7ffda769137541eea89b.jpeg

5. 制作广告

广告创作需要长期的探索,很大程度上取决于您的行业、目标、现有资产等等。但您至少需要几个广告组才可以得到汇报。Google 会引导您完成此过程,询问您的网址和相关关键字:

004de84da3e6e44063996df405eac4b3.jpeg

然后,Google Ads 会要求您撰写一些广告。当您制作广告时,您会在右侧看到它的预览。

您需要包括:

  • 一个网址
  • 最多 15 个标题选项
  • 最多 4 条描述
  • 图片
  • 附加链接:广告下方显示的 4 个或更多附加特定链接。
  • 标注:简短的属性,例如卖点词等。
  • 另外,任何可选的详细信息,例如电话号码、您的应用商店链接等。

3664f486f1f85d04cd690df7e340f3a4.jpeg二、制作成功的 Google 广告的 4 个技巧

1. 关注热门新闻

每个广告最多可以包含 15 个标题,因此可以结合热门,最大限度地发挥广告的潜力。根据您的广告格式,Google 会将它们混合起来以显示最有可能转化的广告格式,每个广告格式之间用破折号分隔。

2. 测试与实验

即使效果最好的广告也可以通过测试新的变体来改进。经常进行A/B 测试,不要害怕尝试新的广告文案、视觉效果等。

3. 有明确的号召性用语

对于以转化为重点的按点击付费 (PPC) 广告系列,请保持号召性用语简单且具有描述性,准确描述您的指引操作。

4. 使用所有可用的广告属性

很多广告属性是可选的,但包含标注和附加链接等附加字段,可以更有机会使您的广告脱颖而出,吸引了人们的注意。

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值