VIT训练

加载imagenet预训练模型:

首先需要安装timm库:

pip install timm

timm库使用的话参考https://rwightman.github.io/pytorch-image-models/

这里加载了输入图像大小为224*224,patch大小为16*16的vit模型

from timm import create_model as creat
model = creat('vit_base_patch16_224', pretrained=True, num_classes=1000)

从头开始训练模型的话需要安装vit-pytorch库:

pip install vit-pytorch

这里建议添加豆瓣镜像源来加速下载:

pip config set global.index-url https://pypi.douban.com/simple/  # 统一更改为豆瓣源(用户)
pip config set global.index-url https://pypi.python.org/simple/  #恢复默认

这里写了个数据加载模块来实现对于imagenet的验证集无类别标签文件夹的情况的图像标签读取

class ImageTxtDataset(data.Dataset):
    def __init__(self, txt_path: str, folder_name, transform):
        self.transform = transform
        self.data_dir = os.path.dirname(txt_path)
        self.imgs_path = []
        self.labels = []
        self.folder_name = folder_name
        with open(txt_path, 'r') as f:
            lines = f.readlines()
        for line in lines:
            img_path, label = line.split()
            label = int(label.strip())
            img_path = os.path.join(self.data_dir, self.folder_name, img_path)
            self.labels.append(label)
            self.imgs_path.append(img_path)
    def __len__(self):
        return len(self.imgs_path)
    def __getitem__(self, i):
        path, label = self.imgs_path[i], self.labels[i]
        image = Image.open(path).convert("RGB")
        if self.transform is not None:
            image = self.transform(image)
        return image, label

完整代码如下:

import argparse
from timm import create_model as creat
import torch
import torch.nn as nn
import torch.utils.data as data
import matplotlib.pyplot as plt
import os
from PIL import Image
import random
import shutil
import time
import warnings
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms



plt.ion()   # interactive mode

from vit_pytorch import ViT

class ImageTxtDataset(data.Dataset):
    def __init__(self, txt_path: str, folder_name, transform):
        self.transform = transform
        self.data_dir = os.path.dirname(txt_path)
        self.imgs_path = []
        self.labels = []
        self.folder_name = folder_name
        with open(txt_path, 'r') as f:
            lines = f.readlines()
        for line in lines:
            img_path, label = line.split()
            label = int(label.strip())
            img_path = os.path.join(self.data_dir, self.folder_name, img_path)
            self.labels.append(label)
            self.imgs_path.append(img_path)
    def __len__(self):
        return len(self.imgs_path)
    def __getitem__(self, i):
        path, label = self.imgs_path[i], self.labels[i]
        image = Image.open(path).convert("RGB")
        if self.transform is not None:
            image = self.transform(image)
        return image, label




parser = argparse.ArgumentParser(description='VIT ImageNet Training')
parser.add_argument('--train_label', metavar='TRAIN_LABEL_DIR', default='E:/imagenet/train_label.txt',
                    help='path to train_label')
parser.add_argument('--val_label', metavar='VAL_LABEL_DIR', default='E:/imagenet/validation_label.txt',
                    help='path to validation_label')
parser.add_argument('--train_data', metavar='TRAIN', default='train',
                    help='path to train_dataset')
parser.add_argument('--val_data', metavar='VAL', default='val',
                    help='path to val_dataset')
parser.add_argument('-j', '--workers', default=0, type=int, metavar='N',
                    help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
                    help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                    help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=1, type=int,
                    metavar='N',
                    help='mini-batch size (default: 256), this is the total '
                         'batch size of all GPUs on the current node when '
                         'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
                    metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                    help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                    metavar='W', help='weight decay (default: 1e-4)',
                    dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
                    metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
                    help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                    help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
                    help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
                    help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
                    help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                    help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
                    help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
                    help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
                    help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
                    help='Use multi-processing distributed training to launch '
                         'N processes per node, which has N GPUs. This is the '
                         'fastest way to use PyTorch for either single node or '
                         'multi node data parallel training')

best_acc1 = 0

def main():
    args = parser.parse_args()

    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    if args.gpu is not None:
        warnings.warn('You have chosen a specific GPU. This will completely '
                      'disable data parallelism.')

    if args.dist_url == "env://" and args.world_size == -1:
        args.world_size = int(os.environ["WORLD_SIZE"])

    args.distributed = args.world_size > 1 or args.multiprocessing_distributed

    ngpus_per_node = torch.cuda.device_count()
    # print(ngpus_per_node)
    if args.multiprocessing_distributed:
        args.world_size = ngpus_per_node * args.world_size
        mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
    else:
        main_worker(args.gpu, ngpus_per_node, args)


def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    print(args)
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if not args.multiprocessing_distributed:
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)

    if args.pretrained:
        model = creat('vit_base_patch16_224', pretrained=True, num_classes=1000)
    else:
        model = ViT(
                    image_size = 224,
                    patch_size = 16,
                    num_classes = 1000,
                    dim = 1024,
                    depth = 6,
                    heads = 16,
                    mlp_dim = 2048,
                    dropout = 0.1,
                    emb_dropout = 0.1
                    )

    if not torch.cuda.is_available():
        print('using CPU, this will be slow')
    elif args.distributed:
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        else:
            model.cuda()
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    optimizer = torch.optim.SGD(model.parameters(), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    train_dataset = ImageTxtDataset(args.train_label,
                                    args.train_data,
                                    transforms.Compose([transforms.RandomResizedCrop(224),
                                                        transforms.RandomHorizontalFlip(),
                                                        transforms.ToTensor(),
                                                        normalize,
                                                        ]))



    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    # args.workers=0
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    val_dataset = ImageTxtDataset(args.val_label,
                                  args.val_data,
                                  transforms.Compose([
                                      transforms.Resize(256),
                                      transforms.CenterCrop(224),
                                      transforms.ToTensor(),
                                      normalize,]))


    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': 'vit',
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
            }, is_best)

def train(train_loader, model, criterion, optimizer, epoch, args):
    batch_time = AverageMeter('Time', ':6.3f')
    data_time = AverageMeter('Data', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        len(train_loader),
        [batch_time, data_time, losses, top1, top5],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    # print('adg')
    for i, (images, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        if args.gpu is not None:
            images = images.cuda(args.gpu, non_blocking=True)
        if torch.cuda.is_available():
            target = target.cuda(args.gpu, non_blocking=True)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)

def validate(val_loader, model, criterion, args):
    batch_time = AverageMeter('Time', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(
        len(val_loader),
        [batch_time, losses, top1, top5],
        prefix='Test: ')

    # switch to evaluate mode
    model.eval()

    with torch.no_grad():
        end = time.time()
        for i, (images, target) in enumerate(val_loader):
            if args.gpu is not None:
                images = images.cuda(args.gpu, non_blocking=True)
            if torch.cuda.is_available():
                target = target.cuda(args.gpu, non_blocking=True)

            # compute output
            output = model(images)
            loss = criterion(output, target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), images.size(0))
            top1.update(acc1[0], images.size(0))
            top5.update(acc5[0], images.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % args.print_freq == 0:
                progress.display(i)

        print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
              .format(top1=top1, top5=top5))

    return top1.avg

def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, 'model_best.pth.tar')


class AverageMeter(object):
    def __init__(self, name, fmt=':f'):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print('\t'.join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = '{:' + str(num_digits) + 'd}'
        return '[' + fmt + '/' + fmt.format(num_batches) + ']'


def adjust_learning_rate(optimizer, epoch, args):
    lr = args.lr * (0.1 ** (epoch // 30))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr


def accuracy(output, target, topk=(1,)):
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


if __name__ == '__main__':
    main()
使用方法如下:

文件名为main.py

CPU训练;

python main.py --lr 0.001 --data (自己的数据集文件路径)

单GPU从头训练:

python main.py --gpu 0 --lr 0.001 --data (自己的数据集文件路径)

单GPU使用预训练模型训练:

python main.py --gpu 0 --lr 0.001 --data (自己的数据集文件路径)--pretrained

多GPU从头训练(四卡为例):

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --data --lr 0.001(自己的数据集文件路径) --world-size 1 --rank 0  --b 64

多GPU使用预训练模型训练(四卡为例):

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --data --lr 0.001(自己的数据集文件路径) --world-size 1 --rank 0  --b 64 --pretrained

Transformer发轫于NLP(自然语言处理),并跨界应用到CV(计算机视觉)领域。 Swin Transformer是基于Transformer的计算机视觉骨干网,在图像分类、目标检测、实例分割、语义分割等多项下游CV应用中取得了SOTA的性能。该项工作也获得了ICCV 2021顶会最佳论文奖。 本课程将手把手地教大家使用labelImg标注和使用Swin Transformer训练自己的数据集。  本课程将介绍Transformer及在CV领域的应用、Swin Transformer的原理。 课程以多目标检测(足球和梅西同时检测)为例进行Swin Transformer实战演示。 课程在Windows和Ubuntu系统上分别做项目演示。包括:安装软件环境、安装Pytorch、安装Swin-Transformer-Object-Detection、标注自己的数据集、准备自己的数据集(自动划分训练集和验证集)、数据集格式转换(Python脚本完成)、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计、日志分析。  相关课程: 《Transformer原理与代码精讲(PyTorch)》https://edu.csdn.net/course/detail/36697《Transformer原理与代码精讲(TensorFlow)》https://edu.csdn.net/course/detail/36699《ViT(Vision Transformer)原理与代码精讲》https://edu.csdn.net/course/detail/36719《DETR原理与代码精讲》https://edu.csdn.net/course/detail/36768《Swin Transformer实战目标检测:训练自己的数据集》https://edu.csdn.net/course/detail/36585《Swin Transformer实战实例分割:训练自己的数据集》https://edu.csdn.net/course/detail/36586《Swin Transformer原理与代码精讲》 https://download.csdn.net/course/detail/37045
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值