写在前面
今年的SIGCOMM上, MIT CSAIL的一支研究团队,发表了一篇名为Pensieve的工作,即利用神经网络优化码率自适应算法,用于提高媒体传输质量。文章结果表明:与一般的state-of-the-art 方法相比,Pensieve能平均提升QoE高达12%–25%。之所以介绍这篇文章,基于以下几方面的原因:一是自己从事流媒体传输优化的研究多年,也小有成果,对这类研究自然非常感兴趣;二是文章的思路,在2015年时自己曾想过,只是当时既没有实际需求要深入,也因为确实遇到一些问题不知如何解决(没有数据集),也就不了了之,这次看到这个文章,自然眼前一亮;三是这个工作是一个很好的引子,给出了如何将当前热的发紫的深度学习,用于流媒体传输优化上,先不管其是否完美(research永无止境,没有完美的),起码开了一个好头,有兴趣的同行,深入下去应该也能有所小成。此外,该文的一作和其团队还是非常牛的,当别人还在因为中了个mm、infocom就觉得多牛时,他们团队在sigcomm, mobicom上跟玩一样,而且非常务实,基本每篇文章都把代码放出来,惭愧~
在阅读之前,建议熟悉下DASH(Dynamic Additive Streaming over HTTP)或NN(Neural Network)的基本概念和原理,不然有的概念估计不好理解。
开始正题
以下分四个部分介绍下Pensieve:Motivation,Dataset,Network,Results
1、Motivation
Pensieve的动机,即解决传统码率自适应方法面临的两大难题:复杂多变的网络环境和QoE指标。
举例说明,如下图,其中MPC (Model Predictive Control)是卡内基梅隆大学根据网络变化进行预测优化的码率自适应策略,robustMPC则是他的改良版本。
在图(a)中,带宽波动剧