如何看待Pensieve:MIT基于神经网络的流媒体码率自适应策略(周超)

本文介绍了MIT CSAIL团队在SIGCOMM上发表的Pensieve工作,该工作利用神经网络改进码率自适应算法,提升了12%–25%的媒体传输质量。Pensieve旨在解决复杂网络环境和QoE指标的挑战,通过模拟获取数据集并使用Actor-Critic网络进行决策。实验结果显示Pensieve性能显著,但数据集构建和QoE模型仍有待进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何看待Pensieve:MIT基于神经网络的流媒体码率自适应策略

写在前面

今年的SIGCOMM上, MIT CSAIL的一支研究团队,发表了一篇名为Pensieve的工作,即利用神经网络优化码率自适应算法,用于提高媒体传输质量。文章结果表明:与一般的state-of-the-art 方法相比,Pensieve能平均提升QoE高达12%–25%。之所以介绍这篇文章,基于以下几方面的原因:一是自己从事流媒体传输优化的研究多年,也小有成果,对这类研究自然非常感兴趣;二是文章的思路,在2015年时自己曾想过,只是当时既没有实际需求要深入,也因为确实遇到一些问题不知如何解决(没有数据集),也就不了了之,这次看到这个文章,自然眼前一亮;三是这个工作是一个很好的引子,给出了如何将当前热的发紫的深度学习,用于流媒体传输优化上,先不管其是否完美(research永无止境,没有完美的),起码开了一个好头,有兴趣的同行,深入下去应该也能有所小成。此外,该文的一作和其团队还是非常牛的,当别人还在因为中了个mm、infocom就觉得多牛时,他们团队在sigcomm, mobicom上跟玩一样,而且非常务实,基本每篇文章都把代码放出来,惭愧~

在阅读之前,建议熟悉下DASH(Dynamic Additive Streaming over HTTP)或NN(Neural Network)的基本概念和原理,不然有的概念估计不好理解。

开始正题

以下分四个部分介绍下Pensieve:Motivation,Dataset,Network,Results

1、Motivation

Pensieve的动机,即解决传统码率自适应方法面临的两大难题:复杂多变的网络环境和QoE指标。

举例说明,如下图,其中MPC (Model Predictive Control)是卡内基梅隆大学根据网络变化进行预测优化的码率自适应策略,robustMPC则是他的改良版本。

 

 

在图(a)中,带宽波动剧

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值