折线分割平面
Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2 1 2
Sample Output
2 7解题思路:1递推递推,先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,由于每增加N个交点,就增加N+1个平面,此时分出的部分多出了
(n-1)+1;
2折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条拆线时,此时与图形新的交点最多有2*2(n-1)个,所以分出的部分多出了2*2(n-1)+1 所以推出f(n)=f(n-1)+4*(n-1)+1,n>=3
代码:
#include<stdio.h> int main() { int c,n; __int64 a[10010]; scanf("%d",&c); while(c--) { scanf("%d",&n); a[1]=2; for(int i=2;i<=n;i++) { a[i]=a[i-1]+4*(i-1)+1; } printf("%I64d\n",a[n]); } return 0; }