动态规划 最长不下降子序列

  • 难点
    状态:以A[i]结尾的最长不下降子序列
    状态转移方程:dp[i] = max(1,dp[j]+1)
  • 代码实现
#include<stdio.h>

const int maxn = 1000;

int A[maxn],dp[maxn];

int main()
{
    int i,j;
    int n;
    scanf("%d",&n);
    for(i = 1;i<=n;i++)
    {
        scanf("%d",&A[i]);
    }
    for(i=1;i<=n;i++)
    {
        dp[i] = 1;//初始化j
        for(j = 1;j<i;j++)
        {
            if(A[i]>=A[j] && dp[j] + 1> dp[i])
            {
                dp[i] = dp[j] + 1;
            }
        }
    }
    //数组中求最大值
    int k = 1;
    for(i = 2;i<=n;i++)
    {
        if(dp[i]>dp[k])
            k = i;
    }
    printf("%d\n",dp[k]);
    return 0;
}
/*
IN:
8
1 2 3 -9 3 9 0 11

OUT:
6

*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值