第二章 线性表

本文介绍了顺序表的基本概念,包括静态和动态分配的顺序表定义,并提供了初始化、插入、删除等操作的C语言实现。同时,展示了王道书中的部分算法题目,如找中位数、主元素(摩尔投票法)、最小未出现正整数等,以及相关解决方案。此外,还讨论了数组操作和排序算法,如合并排序、中位数查找和数组元素调整等。
摘要由CSDN通过智能技术生成

一、顺序表

1.1 基本定义

#define MaxSize 10

// 静态分配定义
typedef struct {
	int data[MaxSize];
	int length;
} SqList;

// 初始化
void InitList(SqList &L) {
	for (int i = 0; i < MaxSize; i ++ )
		L.data[i] = 0;
	L.length = 0;
}

// 插入顺序表
bool ListInsert(SqList &L, int i, int e) {
	if (i < 1 || i > L.length + 1) return false;
	if (L.length == MaxSize) return false;
	for (int j = L.length; j >= i; j -- ) L.data[j] = L.data[j - 1];
	L.data[i - 1] = e;
	L.length ++ ;
	return true;
}

// 删除顺序表中的元素
bool ListDelete(SqList &L, int i, int &e) {
	if (i < 1 || i > L.length) return false;
	e = L.data[i - 1];
	for (int j = i; j < L.length; j ++ ) L.data[j - 1] = L.data[j];
	L.length -- ;
	return true;
}

// 按位取值
int GetElem(SqList L, int i) {
	return L.data[i - 1];
}

// 按值获取位置
int LocateElem(SqList L, int e) {
	for (int i = 0; i < L.length; i ++ )
		if (L.data[i] == e) return i + 1;
	return 0;
}

补充一个动态分配的顺序表定义:

#define InitSize 10

typedef struct {
	int *data;
	int MaxSize;
	int length;
} SeqLsit;

// 初始化
void InitList(SeqLsit &L) {
	L.data = (int *)malloc(InitSize * sizeof(int));
	L.length = 0;
	L.MaxSize = InitSize;
}

// 扩大顺序表
void IncreaseSize(SeqLsit &L, int len) {
	int *p = L.data;
	L.data = (int *)malloc((L.MaxSize + len) * sizeof (int));
	for (int i = 0; i < L.length; i ++ ) L.data[i] = p[i];
	L.MaxSize = L.MaxSize + len;
	free(p);
}

1.2 王道书题目(2023版)

01

int Solu_1(int q[], int len) {
	if (len == 0) {
		printf("顺序表为空\n");
		return -1;
	}
	int res = q[0], pos = 0;
	for (int i = 0; i < len; i ++ )
		if (q[i] < res) 
			res = q[i], pos = i;
	q[pos] = q[len - 1];
	return res;
}

02

void Solu_2(int q[], int len) {
	for (int i = 0; i < len / 2; i ++ ) {
		int tmp = q[i];
		q[i] = q[len - i - 1];
		q[len - i - 1] = tmp;
	}
}

03

void Solu_3(int q[], int len, int x) {
	for (int i = 0, j = 0; i < len; i ++ )
		if (q[i] != x) q[j ++ ] = q[i];
}

04

void Solu_4(int q[], int len, int s, int t) {
	if (len == 0) {
		printf("顺序表为空\n");
		return;
	}
	if (s >= t) {
		printf("s和t不合理\n");
		return;
	}
	for (int i = 0, j = 0; i < len; i ++ ) 
		if (q[i] < s || q[i] > t) q[j ++ ] = q[i];
}

06

void Solu_6(int q[], int len) {
	for (int i = 1, j = 0; i < len; i ++ )
		if (q[i] != q[j]) q[ ++ j] = q[i];
}

07

void Solu_7(int q1[], int len1, int q2[], int len2, int ret[]) {
    int i = 0, j = 0, k = 0;
    while (i < len1 && j < len2)
        if (q1[i] <= q2[j]) ret[k++] = q1[i++];
        else ret[k++] = q2[j++];
    while (i < len1) ret[k++] = q1[i++];
    while (j < len2) ret[k++] = q2[j++];
}

一个经典错误:在函数内部开一个数组,函数结束后数组被清除,所以在函数外部输出的时候就是错误的数据!

int[] Solu_7(int q1[], int len1, int q2[], int len2) {
	int ret[len1 + len2]; // 这里在函数内部开的数组
	int i = 0, j = 0, k = 0;
	while (i < len1 && j < len2) 
		if (q1[i] < q2[j]) ret[k ++ ] = q1[i ++ ];
		else ret[k ++ ] = q2[j ++ ];
	while (i < len1) ret[k ++ ] = q1[i ++ ];
	while (j < len2) ret[k ++ ] = q2[j ++ ];
	return ret;
}

int main() {
	int q1[] = {2, 2, 3, 4, 4}, q2[] = {3, 5, 6};
	int ret[] = Solu_7(q1, 5, q2, 3);
	for (int i = 0; i < 8; i ++ ) cout << ret[i] << " "; // 打印的全是错误的数据
	return 0;
}

08

void Solu_08(int q[], int len, int left, int right) {
    if (left >= right || right >= len) return;
    int mid = (left + right) >> 1;
    for (int i = 0; i < mid - left + 1; i ++ ) {
        int tmp = q[left + i];
        q[left + i] = q[right - i];
        q[right - i] = tmp;
    }
}

09

void Solu_09(int q[], int len, int x) {
    int l = 0, r = len - 1;
    while (l < r) {
        int mid = (l + r) >> 1;
        if (q[mid] >= x) r = mid;
        else l = mid + 1;
    }
    if (q[l] == x) {
        if (l != len - 1) {
            int tmp = q[l + 1];
            q[l + 1] = q[l];
            q[l] = tmp;
        } else return;
    } else {
        for (int i = len; i > l; i -- ) q[i] = q[i - 1]; // 易错:这一步要从后往前
        q[l] = x;
    }
}

11 找中位数

参见LeetCode 4

暴力做法:将两个数组合并后排序,如果总共有奇数个数,中位数为中间一个数,否则为中间两个数的平均值。
时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( n + m ) O(n + m) O(n+m)

class Solution {
public:
    double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2) {
        int total = nums1.size() + nums2.size();
        vector<int> alls;
        for (auto c: nums1) alls.push_back(c);
        for (auto c: nums2) alls.push_back(c);
        sort(alls.begin(), alls.end());
        if (total & 1) return alls[total / 2];
        else return (alls[total / 2] + alls[total / 2 - 1]) / 2.0;
    }
};

优化做法:递归

首先,如果 ( m + n ) & 1 = 0 (m+n)\&1 = 0 (m+n)&1=0,那么中位数为中间两个数之和在除以 2.0 2.0 2.0,否则中位数为最中间的一个数。

原问题难以直接递归求解,所以我们先考虑这样一个问题:在两个有序数组中,找出第 k k k小数。如果该问题可以解决,那么第 ( n + m ) / 2 (n+m)/2 (n+m)/2 小数就是我们要求的中位数。

先从简单情况入手,假设有数组 n u m s [ 1 , m + n ] , n u m s 1 [ 1 , m ] , n u m s 2 [ 1 , n ] nums[1, m + n],nums1[1, m],nums2[1, n] nums[1,m+n]nums1[1,m]nums2[1,n],且 m , n ≥ k / 2 m,n≥k/2 m,nk/2。我们先从 n u m s 1 nums1 nums1 n u m s 2 nums2 nums2 中各取前 k / 2 k/2 k/2 个元素:

  • 如果 n u m s 1 [ k / 2 ] < n u m s 2 [ k / 2 ] nums1[k/2]<nums2[k/2] nums1[k/2]<nums2[k/2],那么在数组 n u m s 1 nums1 nums1中小于等于 n u m s 1 [ k / 2 ] nums1[k/2] nums1[k/2]的数的个数有 k / 2 k/2 k/2个;因为 n u m s 1 [ k / 2 ] < n u m s 2 [ k / 2 ] nums1[k/2]<nums2[k/2] nums1[k/2]<nums2[k/2],所以在数组 n u m s 2 nums2 nums2中小于等于 n u m s 1 [ k / 2 ] nums1[k/2] nums1[k/2]的数的个数应该小于 k / 2 k/2 k/2个。因此,在数组 n u m s nums nums中,小于等于 n u m s 1 [ k / 2 ] nums1[k/2] nums1[k/2]的个数应该小于 k k k个,所以对于数组 n u m s 1 [ 1 , k / 2 ] nums1[1, k/2] nums1[1,k/2]的数都不会是中位数,就可以将这部分数据删去;
  • 对于 n u m s 1 [ k / 2 ] > n u m s 2 [ k / 2 ] nums1[k/2]>nums2[k/2] nums1[k/2]>nums2[k/2] 的时候同理,对于数组 n u m s 2 [ 1 , k / 2 ] nums2[1, k/2] nums2[1,k/2]的数都不会是中位数,就可以将这部分数据删去;
  • n u m s 1 [ k / 2 ] = n u m s 2 [ k / 2 ] nums1[k/2]=nums2[k/2] nums1[k/2]=nums2[k/2] 的时候,说明 n u m s [ k / 2 ] nums[k/2] nums[k/2]恰好是第 k k k个元素,这时候可以删去 n u m s 1 [ 1 , k / 2 ] nums1[1, k/2] nums1[1,k/2] n u m s 2 [ 1 , k / 2 ] nums2[1,k/2] nums2[1,k/2] 任意一个;

可以发现每一次比较完之后,都可以删去 k / 2 k/2 k/2个元素,所以每一次 k k k都会除以 2 2 2。当 k = 1 k=1 k=1的时候,即比较两个数组的最小值。所以这个过程最多递归 l o g k log^k logk次,因为 k = ( m + n ) / 2 k = (m + n)/2 k=(m+n)/2,所以时间复杂度为 1 2 l o g ( m + n ) \frac{1}{2} log^{(m+n)} 21log(m+n),即为 l o g ( m + n ) log^{(m+n)} log(m+n)

时间复杂度: l o g ( m + n ) log(m + n) log(m+n)
空间复杂度: O ( 1 ) O(1) O(1)

class Solution {
public:
    double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2) {
        int total = nums1.size() + nums2.size();
        if (!(total & 1)) {
            int left = findKthNumber(nums1, 0, nums2, 0, total / 2);
            int right = findKthNumber(nums1, 0, nums2, 0, total / 2 + 1);
            return (left + right) / 2.0;
        } else return findKthNumber(nums1, 0, nums2, 0, total / 2 + 1);
    }

    int findKthNumber(vector<int> &nums1, int i, vector<int> &nums2, int j, int k) {
        if (nums1.size() - i > nums2.size() - j) return findKthNumber(nums2, j, nums1, i, k); // 使第一个数组较短
        if (nums1.size() == i) return nums2[j + k - 1]; // 第一个数组为空
        if (k == 1) return min(nums1[i], nums2[j]); // 只有一个数
        int si = min(i + k / 2, int(nums1.size())), sj = j + k / 2; // 第一个数组较短,可能越界
        if (nums1[si - 1] > nums2[sj - 1]) return findKthNumber(nums1, i, nums2, sj, k - (sj - j)); // 将nums2前面的数删去
        else return findKthNumber(nums1, si, nums2, j, k - (si - i));
    }
};

12 找主元素:摩尔投票法

int Solu_12(int q[], int len) {
    int cnt = 0, val;
    for (int i = 0; i < len; i ++ ) {
        if (!cnt) val = q[i], cnt ++ ;
        else if (q[i] == val) cnt ++ ;
        else cnt -- ;
    }
    return val;
}

13 数组中未出现过得最小正整数

int Solu_13(int A[], int n) {
    int *B;
    B = (int *)malloc(sizeof (int) * n);
    memset(B, 0, sizeof B);
    for (int i = 0; i < n; i ++ )
        if (A[i] > 0) B[i] = 1;
    int i = 0;
    while (i < n)
        if (!B[i]) break;
    return i + 1;
}

14 三元组的最小距离

三元组 ( a , b , c ) (a, b, c) (a,b,c)之间的距离 = ( m a x ( a , b , c ) − m i n ( a , b , c ) ) × 2 (max(a, b, c) - min(a, b, c)) \times 2 (max(a,b,c)min(a,b,c))×2

#include <iostream>
#include <algorithm>
using namespace std;

typedef long long LL;

const int N = 1e5 + 10;

int l, m, n;
int a[N], b[N], c[N];

int main() {
    scanf("%d%d%d", &l, &m, &n);
    for (int i = 0; i < l; i ++ ) scanf("%d", a + i);
    for (int i = 0; i < m; i ++ ) scanf("%d", b + i);
    for (int i = 0; i < n; i ++ ) scanf("%d", c + i);
    LL res = 1e18;
    for (int i = 0, j = 0, k = 0; i < l && j < m && k < n; ) {
        int x = a[i], y = b[j], z = c[k];
        res = min(res, (LL)max(max(x, y), z) - min(min(x, y), z));
        if (x <= y && x <= z) i ++ ;
        else if (y <= x && y <= z) j ++ ;
        else k ++ ;
    }
    printf("%lld\n", res * 2);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值