瑞利分布的平方是什么分布

首先给出结论:
瑞利分布的平方是Gamma分布。

从正态分布说起

由于正态分布介绍非常多了,下面就直接给出正态分布的形式:
X ∼ N ( μ , σ 2 ) . X \sim N\left( {\mu ,{\sigma ^2}} \right). XN(μ,σ2).
那么 X X X的概率密度函数为:
f X ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 . {f_X}\left( x \right) = {1 \over {\sqrt {2\pi } \sigma }}{e^{ - {{{{\left( {x - \mu } \right)}^2}} \over {2{\sigma ^2}}}}}. fX(x)=2π σ1e2σ2(xμ)2.
它的期望和方差分别为: E ( X ) = μ , E\left( X \right) = \mu, E(X)=μ, D ( X ) = σ 2 . D\left( X \right) = {\sigma ^2}. D(X)=σ2.

瑞利分布

当一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布。瑞利分布是最常见的用于描述平坦衰落信号接收包络或独立多径分量接受包络统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。
通常来说,在信道中的高斯噪声服从期望为0,方差为 σ 2 \sigma^2 σ2的分布,即 X 1 X_1 X1 X 2 X_2 X2服从
X 1 ∼ N ( 0 , σ 2 ) , X_1 \sim N\left( {0,{\sigma ^2}} \right), X1N(0,σ2), X 2 ∼ N ( 0 , σ 2 ) . X_2 \sim N\left( {0,{\sigma ^2}} \right). X2N(0,σ2).由此可以得到两个正交高斯噪声之和的包络
Y = X 1 2 + X 2 2 Y = \sqrt {X_1^2 + X_2^2} Y=X12+X22 服从瑞利分布:
Y ∼ R a y l e i g h ( σ ) . Y \sim Rayleigh\left( \sigma \right). YRayleigh(σ).其概率密度函数表示为
f Y ( y ) = y σ 2 e − y 2 2 σ 2 {f_Y}\left( y \right) = {y \over {{\sigma ^2}}}{e^{ - {{{y^2}} \over {2{\sigma ^2}}}}} fY(y)=σ2ye2σ2y2它的期望和方差分别为:
E ( Y ) = π 2 σ , E\left( Y \right) = \sqrt {{\pi \over 2}} \sigma, E(Y)=2π σ, D ( Y ) = 4 − π 2 σ 2 . D\left( Y \right) = {{4 - \pi } \over 2}{\sigma ^2}. D(Y)=24πσ2.此时已经可以通过计算得到满足瑞利分布平方的随机变量期望为
E ( Y 2 ) = D ( Y ) + E 2 ( Y ) = 2 σ 2 E\left( {{Y^2}} \right) = D\left( Y \right) + {E^2}\left( Y \right) = 2{\sigma ^2} E(Y2)=D(Y)+E2(Y)=2σ2

瑞利分布平方的分布

在求解接收信号功率的相关问题时,可能会遇到信道系数出现平方的场景,此时就需要知道瑞利分布平方服从什么分布。通过上一部分我们知道 Y = X 1 2 + X 2 2 , Y = \sqrt {X_1^2 + X_2^2} , Y=X12+X22 ,那么 Z = Y 2 = X 1 2 + X 2 2 Z = {Y^2} = X_1^2 + X_2^2 Z=Y2=X12+X22可以看作是两个独立且相同的正态分布的和,如果说 X 1 X_1 X1 X 2 X_2 X2服从标准正态分布,即
X 1 ∼ N ( 0 , 1 ) , {X_1} \sim N\left( {0,1} \right), X1N(0,1), X 2 ∼ N ( 0 , 1 ) . {X_2} \sim N\left( {0,1} \right). X2N(0,1).
很容易看出此时 Z Z Z服从自由度 n = 2 n=2 n=2的卡方分布
Z ∼ χ 2 ( n = 2 ) . Z\sim\chi^2\left( n=2\right). Zχ2(n=2).

卡方分布概率密度函数为:
f Z ( z ) = 1 2 n / 2 Γ ( n / 2 ) e − z 2 z n 2 − 1 , z > 0 {f_Z}\left( z \right) = {1 \over {{2^{n/2}}\Gamma \left( {n/2} \right)}}{e^{ - {z \over 2}}}{z^{{n \over 2} - 1},z>0} fZ(z)=2n/2Γ(n/2)1e2zz2n1,z>0卡方分布的期望和方差分别为:
E ( Y ) = n , E\left( Y \right) = n, E(Y)=n, D ( Y ) = 2 n . D\left( Y \right) = 2n. D(Y)=2n.

n = 2 n=2 n=2时可以得到满足标准正态分布时瑞利分布的平方概率密度为:
f Z ( z ) = 1 2 e − z 2 {f_Z}\left( z \right) = {1 \over 2}{e^{ - {z \over 2}}} fZ(z)=21e2z并且期望是2,方差是4。

那么问题来了,通常在信道中噪声的方差并不满足为1这个条件,此时又服从什么分布?

X i ∼ N ( 0 , σ 2 ) , X_i \sim N\left( {0,{\sigma ^2}} \right), XiN(0,σ2),易得
X i σ ∼ N ( 0 , 1 ) {{{X_i}} \over \sigma } \sim N\left( {0,1} \right) σXiN(0,1) ( X i σ ) 2 ∼ χ 2 ( 1 ) = Γ ( 1 2 , 1 2 ) {\left( {{{{X_i}} \over \sigma }} \right)^2} \sim \chi^2\left( {1} \right)=\Gamma\left( \frac{1}{2},\frac{1}{2}\right) (σXi)2χ2(1)=Γ(21,21)根据gamma分布伸缩性
X i 2 ∼ σ 2 Γ ( 1 2 , 1 2 ) = Γ ( 1 2 , 1 2 σ 2 ) X_i^2 \sim {\sigma ^2}\Gamma \left( {{1 \over 2},\frac{1}{2}} \right) = \Gamma \left( {{1 \over 2},\frac{1}{2{\sigma ^2}}} \right) Xi2σ2Γ(21,21)=Γ(21,2σ21)同样的,当多个 X i X_i Xi方差一致,即它们的平方满足相同的gamma分布时是可加的,表示为 ∑ i = 1 n X i 2 ∼ n Γ ( 1 2 , 1 2 σ 2 ) = Γ ( n 2 , 1 2 σ 2 ) \sum\limits_{i = 1}^n {X_i^2} \sim n\Gamma \left( {{1 \over 2},\frac{1}{2{\sigma ^2}}} \right) = \Gamma \left( {{n \over 2},\frac{1}{2{\sigma ^2}}} \right) i=1nXi2nΓ(21,2σ21)=Γ(2n,2σ21)gamma分布 Γ ( α , λ ) \Gamma\left(\alpha,\lambda \right) Γ(α,λ)的概率分布为 f Z ( z ) = λ α z α − 1 e − λ z Γ ( α ) , z > 0. {f_Z}\left( z \right) = {{{\lambda ^\alpha }{z^{\alpha - 1}}{e^{ - \lambda z}}} \over {\Gamma \left( \alpha \right)}},z > 0. fZ(z)=Γ(α)λαzα1eλz,z>0.方差和期望分别为: E ( Z ) = α λ , E\left( Z \right) =\frac \alpha \lambda , E(Z)=λα, D ( Z ) = α λ 2 . D\left( Z \right) =\frac \alpha {\lambda ^2}. D(Z)=λ2α.

下面就回到我们的问题,方差不为1的瑞利分布的平方满足 Γ ( 1 , 1 2 σ 2 ) \Gamma\left(1,\frac{1}{2\sigma^2 }\right) Γ(1,2σ21)分布(两项相加),即 α = 1 , λ = 1 2 σ 2 \alpha=1,\lambda=\frac{1}{2\sigma^2} α=1,λ=2σ21,此时的概率密度函数为: f Z ( z ) = 1 2 σ 2 e − z 2 σ 2 , z > 0. {f_Z}\left( z \right) = {1 \over {2{\sigma ^2}}}{e^{ - {z \over {2{\sigma ^2}}}}},z > 0. fZ(z)=2σ21e2σ2z,z>0. σ = 1 \sigma=1 σ=1时,便得到了之前的结果,方差和期望分别为: E ( Z ) = 2 σ 2 , E\left( Z \right) = 2 \sigma^2 , E(Z)=2σ2, D ( Z ) = 4 σ 4 . D\left( Z \right) = 4 \sigma^4. D(Z)=4σ4.也与第二部分的结果一致。

对于其他非标准正态分布的平方和分布可以参考下面链接。

参考

[1]Distribution of sum of squares of normals that have mean zero but not variance one?(此回答中gamma分布的 β \beta β和文中 λ \lambda λ是倒数关系)
[2]怎么来理解伽玛(gamma)分布?
[3]Gamma分布与其余分布的关系图。
[4]解释瑞利分布的平方、莱斯分布的平方、高斯分布的平方 服从什么分布?

  • 14
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值