瑞利分布与卡方分布的联系

引入

今天在思考两个服从正态分布的随机变量的模服从什么分布时,想起了瑞利分布和卡方分布这两个分布,最后查到是服从瑞利分布,但是感觉和卡方分布也有关系。当我以“瑞利分布”和“卡方分布”作为关键词搜索时却没查到什么,所以就写一篇这样的文章出来,以抛砖引玉。

瑞利分布(Rayleigh Distribution):当一个随机二维向量的两个分量呈独立的、均值为 0 0 0,有着相同的方差(设为 σ 2 \sigma^2 σ2)的正态分布时,这个向量的呈瑞利分布。其概率密度函数如下:

f Z ( z ) = { z σ 2 exp ⁡ ( − z 2 2 σ 2 ) z ≥ 0 0 z < 0 f_Z(z) = \left\{ \begin{matrix} \frac{z}{\sigma^{2}}\exp{(-\frac{z^{2}}{2\sigma^{2}})} & z \geq 0 \\ 0 & z < 0 \\ \end{matrix} \right. fZ(z)={σ2zexp(2σ2z2)0z0z<0

瑞利分布-百度百科

卡方分布(Chi-square Distribution):若 n n n个相互独立的随机变量均服从标准正态分布(即均值为0,方差为1的正态分布),则这 n n n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方( χ 2 \chi^2 χ2)分布。其概率密度函数如下:

g M ( m ) = { 1 2 n / 2 Γ ( n / 2 ) z n / 2 − 1 exp ⁡ ( − m / 2 ) m ≥ 0 0 m < 0 g_M(m) = \left\{ \begin{matrix} \frac{1}{2^{n/2}\Gamma(n/2)}z^{n/2-1}\exp{(-m/2)} & m \geq 0 \\ 0 & m < 0 \\ \end{matrix} \right. gM(m)={2n/2Γ(n/2)1zn/21exp(m/2)0m0m<0
卡方分布-百度百科

此处 f ( z ) , g ( m ) f(z),g(m) f(z),g(m)仅代指概率密度函数,对应地, F ( z ) , G ( m ) F(z),G(m) F(z),G(m)分别代指概率分布函数, Γ \Gamma Γ为伽马(Gamma)函数。

联系

对于一个二维随机向量 X = ( x , y ) T \boldsymbol{X} = (x,y)^T X=(x,y)T,其中 x , y ∼ N ( 0 , σ 2 ) x,y \sim N(0, \sigma^2) x,yN(0,σ2),其模长 ∣ X ∣ = x 2 + y 2 |\boldsymbol{X}| = \sqrt{x^2+y^2} X=x2+y2 ,不妨设为 z z z,则根据定义, z z z服从瑞利分布。

根据概率论的知识, x − 0 σ ∼ N ( 0 , 1 ) \frac{x-0}{\sigma} \sim N(0,1) σx0N(0,1),即服从标准正态分布,所以:
( x σ ) 2 + ( y σ ) 2 = x 2 + y 2 σ 2 = m ∼ χ 2 ( 2 ) (\frac{x}{\sigma})^2 + (\frac{y}{\sigma})^2 = \frac{x^2+y^2}{\sigma^2} = m \sim \chi^2(2) (σx)2+(σy)2=σ2x2+y2=mχ2(2)

n = 2 n=2 n=2代入上方公式,得:

g M ( m ; n = 2 ) = { 1 2 exp ⁡ ( − m / 2 ) m ≥ 0 0 m < 0 g_M(m; n=2) = \left\{ \begin{matrix} \frac{1}{2}\exp{(-m/2)} & m \geq 0 \\ 0 & m < 0 \\ \end{matrix} \right. gM(m;n=2)={21exp(m/2)0m0m<0

z z z代入,得:
z 2 σ 2 = m ∼ χ 2 ( 2 ) \frac{z^2}{\sigma^2} = m \sim \chi^2(2) σ2z2=mχ2(2)

m ( z ) = z 2 σ 2 , z ≥ 0 m(z) = \frac{z^2}{\sigma^2}, z \geq 0 m(z)=σ2z2,z0。再根据概率论的知识,设此时 z z z的概率分布函数为 H Z ( z ) H_Z(z) HZ(z),概率密度函数为 h Z ( z ) h_Z(z) hZ(z)

H Z ( z ) = P ( Z ≤ z ) = P ( σ 2 M ≤ z ) = P ( M ≤ z 2 σ 2 ) H_Z(z) = P(Z \leq z) = P(\sqrt{\sigma^2 M} \leq z) = P(M \leq \frac{z^2}{\sigma^2}) HZ(z)=P(Zz)=P(σ2M z)=P(Mσ2z2)

(此处大写 M M M表明是左侧的符号,代入 m ( z ) m(z) m(z)进去)

h Z ( z ) = ( z 2 σ 2 ) ′ ⋅ g M ( z 2 σ 2 ) = ( 2 z σ 2 ) ⋅ g M ( z 2 σ 2 ) = { z σ 2 exp ⁡ ( − z 2 / 2 σ 2 ) z ≥ 0 0 z < 0 h_Z(z) = (\frac{z^2}{\sigma^2})' \cdot g_M(\frac{z^2}{\sigma^2}) = (\frac{2z}{\sigma^2}) \cdot g_M(\frac{z^2}{\sigma^2}) = \left\{ \begin{matrix} \frac{z}{\sigma^2}\exp{(-z^2/2\sigma^2)} & z \geq 0 \\ 0 & z < 0 \\ \end{matrix} \right. hZ(z)=(σ2z2)gM(σ2z2)=(σ22z)gM(σ2z2)={σ2zexp(z2/2σ2)0z0z<0

正是瑞利分布。

所以,服从瑞利分布的随机变量,其平方服从自由度为 2 2 2(即 n = 2 n=2 n=2)的卡方分布。

上述推导可以反过来,即已知 z ( m ) = σ 2 m , m ≥ 0 z(m) = \sqrt{\sigma^2 m}, m \geq 0 z(m)=σ2m ,m0
f Z ( z ) = { z σ 2 exp ⁡ ( − z 2 2 σ 2 ) z ≥ 0 0 z < 0 f_Z(z) = \left\{ \begin{matrix} \frac{z}{\sigma^{2}}\exp{(-\frac{z^{2}}{2\sigma^{2}})} & z \geq 0 \\ 0 & z < 0 \\ \end{matrix} \right. fZ(z)={σ2zexp(2σ2z2)0z0z<0

f M ( m ) = ( σ 2 m ) ′ ⋅ f Z ( σ 2 m ) = σ 2 m f Z ( σ 2 m ) = { 1 2 exp ⁡ ( − m 2 ) m ≥ 0 0 m < 0 f_M(m) = (\sqrt{\sigma^2 m})' \cdot f_Z(\sqrt{\sigma^2 m}) = \frac{\sigma}{2\sqrt{m}}f_Z(\sqrt{\sigma^2 m}) = \left\{ \begin{matrix} \frac{1}{2}\exp{(-\frac{m}{2})} & m \geq 0 \\ 0 & m < 0 \\ \end{matrix} \right. fM(m)=(σ2m )fZ(σ2m )=2m σfZ(σ2m )={21exp(2m)0m0m<0
正是自由度为2的卡方分布。

若能给予帮助,还望点一个小小的赞,不胜感激。

  • 21
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值