概率论与数理统计复习一(伽马函数、正态分布、瑞利分布、线性相关、独立)

各种分布

正态分布

f ( x ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi}\sigma}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) f(x)=2π σ1exp(2σ2(xμ)2)
ϕ ( x ) = 1 2 π e − x 2 2 \phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} ϕ(x)=2π 1e2x2
Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \Phi(x) = \frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{x}e^{-\frac{t^2}{2}}dt Φ(x)=2π 1xe2t2dt
Φ ( − x ) = 1 − Φ ( x ) \Phi(-x) = 1-\Phi(x) Φ(x)=1Φ(x)
若 X i ∼ N ( μ i , σ i 2 ) , 且 他 们 相 互 独 立 , 则 对 于 Z = X 1 + X 2 + ⋯ + X n , Z ∼ N ( μ 1 + μ 2 + ⋯ + μ n , σ 1 2 + σ 2 2 + ⋯ + σ n 2 ) 若X_i\sim N(\mu_i,\sigma^2_i),且他们相互独立,则对于Z = X_1+X_2+\cdots+X_n,Z\sim N(\mu_1+\mu_2+\cdots+\mu_n, \sigma_1^2+\sigma_2^2+\cdots+\sigma_n^2) XiN(μi,σi2),Z=X1+X2++Xn,ZN(μ1+μ2++μn,σ12+σ22++σn2)

引理

对于正态分布
X ∼ N ( μ , σ 2 ) X\sim{N(\mu,\sigma^2)} XN(μ,σ2)
Z = X − μ σ ∼ N ( 0 , 1 ) Z = \frac{X-\mu}{\sigma}\sim{N(0,1)} Z=σXμN(0,1)

瑞利分布

瑞利分布(Rayleigh Distribution):当一个随机二维向量的两个分量呈独立的、均值为0,有着相同的方差的正态分布时,这个向量的模呈瑞利分布。
f ( x ) = x σ 2 e − x 2 2 σ 2 , x > 0 f\left(x\right)=\frac{x}{σ^2}e^{-\frac{x^2}{2σ^2}},x>0 f(x)=σ2xe2σ2x2,x>0

期望与方差

E ( X ) = μ ( X ) = ∫ − ∞ ∞ x f ( x ) d x E\left(X\right)=\mu \left(X\right)=\int _{-\infty }^{\infty }xf\left(x\right)dx E(X)=μ(X)=xf(x)dx
= ∫ 0 ∞ x 2 σ 2 e − x 2 2 σ 2 d x = ∫ 0 ∞ − x d e − x 2 2 σ 2 , ( x > 0 ) =\int _0^{\infty }\frac{x^2}{\sigma ^2}e^{-\frac{x^2}{2\sigma ^2}}dx=\int _0^{\infty }-xde^{-\frac{x^2}{2\sigma ^2}},\left(x>0\right) =0σ2x2e2σ2x2dx=0xde2σ2x2,(x>0)
= − x e − x 2 2 σ 2 ∣ 0 ∞ + ∫ 0 ∞ e − x 2 2 σ 2 d x =-xe^{^{-\frac{x^2}{2\sigma ^2}}}|_0^{\infty }+\int _0^{\infty }e^{^{-\frac{x^2}{2\sigma ^2}}}dx =xe2σ2x20+0e2σ2x2dx
= 0 + 2 π σ ∫ 0 ∞ 1 2 π σ e − x 2 2 σ 2 d x =0+\sqrt{2\pi }\sigma \int _0^{\infty }\frac{1}{\sqrt{2\pi }\sigma }e^{^{-\frac{x^2}{2\sigma ^2}}}dx =0+2π σ02π σ1e2σ2x2dx

= 2 π σ × 1 2 = π 2 σ ≈ 1.253 σ =\sqrt{2\pi }\sigma \times \frac{1}{2}=\sqrt{\frac{\pi }{2}}\sigma \approx 1.253\sigma =2π σ×21=2π σ1.253σ

D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D\left(X\right)=E\left(X^2\right)-\left[E\left(X\right)\right]^2 D(X)=E(X2)[E(X)]2
= ∫ 0 ∞ x 3 σ 2 e − x 2 2 σ 2 d x − [ E ( X ) ] 2 =\int _0^{\infty }\frac{x^3}{\sigma ^2}e^{-\frac{x^2}{2\sigma ^2}}dx-\left[E\left(X\right)\right]^2 =0σ2x3e2σ2x2dx[E(X)]2
= ∫ 0 ∞ − x 2 d e − x 2 2 σ 2 − [ E ( X ) ] 2 =\int _0^{\infty }-x^2de^{-\frac{x^2}{2\sigma ^2}}-\left[E\left(X\right)\right]^2 =0x2de2σ2x2[E(X)]2
= − x 2 e − x 2 2 σ 2 ∣ 0 ∞ + ∫ 0 ∞ e − x 2 2 σ 2 d x 2 − [ E ( X ) ] 2 =-x^2e^{-\frac{x^2}{2\sigma ^2}}|_0^{\infty }+\int _0^{\infty }e^{-\frac{x^2}{2\sigma ^2}}dx^2-\left[E\left(X\right)\right]^2 =x2e2σ2x20+0e2σ2x2dx2[E(X)]2
= 0 − 2 σ 2 e − x 2 2 σ 2 ∣ 0 ∞ − [ E ( X ) ] 2 =0-2\sigma ^2e^{-\frac{x^2}{2\sigma ^2}}|_0^{\infty }-\left[E\left(X\right)\right]^2 =02σ2e2σ2x20[E(X)]2
= 2 σ 2 − ( π 2 σ ) 2 = 4 − π 2 σ 2 ≈ 0.429 σ 2 =2\sigma ^2-\left(\sqrt{\frac{\pi }{2}}\sigma \right)^2=\frac{4-\pi }{2}\sigma ^2\approx 0.429\sigma ^2 =2σ2(2π σ)2=24πσ20.429σ2

泊松分布

期望与方差

E ( x ) = λ E(x) = \lambda E(x)=λ
D ( x ) = λ D(x) = \lambda D(x)=λ
已 知 X ∼ π ( λ ) , 求 E ( λ k e − λ k ! ) 已知X\sim \pi(\lambda),求E\left(\frac{\lambda^ke^{-\lambda}}{k!}\right) Xπ(λ),E(k!λkeλ)
E ( 1 X + 1 ) = ∑ k = 0 ∞ 1 k + 1 P { X = k } E\left(\frac{1}{X+1}\right) = \sum_{k=0}^{\infty}\frac{1}{k+1}P\{X=k\} E(X+11)=k=0k+11P{X=k}

指数分布

期望与方差

E ( x ) = θ E(x) = \theta E(x)=θ
D ( x ) = θ 2 D(x) = \theta^2 D(x)=θ2

指数分布的min、max、和

指数分布概率密度为
f X ( x ) = { α e − α x , x > 0 0 , x ≤ 0 f_X(x) = \left\{ \begin{array}{lr} \alpha e^{-\alpha x} & , x>0\\ 0 & , x \le 0 \end{array} \right. fX(x)={αeαx0,x>0,x0

f Y ( y ) = { β e − β y , y > 0 0 , y ≤ 0 f_Y(y) = \left\{ \begin{array}{lr} \beta e^{-\beta y} & , y>0\\ 0 & , y \le 0 \end{array} \right. fY(y)={βeβy0,y>0,y0

指数分布分布函数为
F X ( x ) = { 1 − e − α x , x > 0 0 , x ≤ 0 F_X(x) = \left\{ \begin{array}{lr} 1-e^{-\alpha x} &, x>0\\ 0 &, x \le 0 \end{array} \right. FX(x)={1eαx0,x>0,x0

F Y ( y ) = { 1 − e − β y , y > 0 0 , y ≤ 0 F_Y(y) = \left\{ \begin{array}{lr} 1-e^{-\beta y} &, y>0\\ 0 &, y \le 0 \end{array} \right. FY(y)={1eβy0,y>0,y0

Z = m i n { X , Y } Z = min\{X,Y\} Z=min{X,Y}

F m a x ( z ) = F X ( z ) F Y ( z ) F_{max}(z) = F_X(z)F_Y(z) Fmax(z)=FX(z)FY(z)
对于独立的两个指数分布
F m i n ( x ) = { 1 − e − ( α + β ) , z > 0 0 , z ≤ 0 F_{min}(x) = \left\{ \begin{array}{lr} 1-e^{-(\alpha+\beta)} &, z>0\\ 0 &, z\le0 \end{array} \right. Fmin(x)={1e(α+β)0,z>0,z0

f m i n ( x ) = { ( α + β ) e − ( α + β ) , z > 0 0 , z ≤ 0 f_{min}(x) = \left\{ \begin{array}{lr} (\alpha + \beta)e^{-(\alpha+\beta)} &, z>0\\ 0 &, z\le0 \end{array} \right. fmin(x)={(α+β)e(α+β)0,z>0,z0

Z = m a x { X , Y } Z = max\{X,Y\} Z=max{X,Y}

F m i n ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_{min}(z) = 1-\left[1-F_X(z)\right]\left[ 1 - F_Y(z)\right] Fmin(z)=1[1FX(z)][1FY(z)]

Z = X + Y Z = X+Y Z=X+Y

f X + Y ( z ) = ∫ − ∞ ∞ f ( z − y , y )   d y f_{X+Y}(z) = \int\limits_{-\infty}^{\infty}f(z-y,y)\,\mathrm{d}y fX+Y(z)=f(zy,y)dy
f X + Y ( z ) = ∫ − ∞ ∞ f ( x , z − x )   d x f_{X+Y}(z) = \int\limits_{-\infty}^{\infty}f(x,z-x)\,\mathrm{d}x fX+Y(z)=f(x,zx)dx
独立时,有卷积公式
f X ∗ f Y = f X + Y ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y )   d y = ∫ − ∞ ∞ f X ( x ) f Y ( z − x )   d x f_X * f_Y = f_{X+Y}(z) = \int\limits_{-\infty}^{\infty}f_X(z-y)f_Y(y)\,\mathrm{d}y = \int\limits_{-\infty}^{\infty}f_X(x)f_Y(z-x)\,\mathrm{d}x fXfY=fX+Y(z)=fX(zy)fY(y)dy=fX(x)fY(zx)dx
f ( z ) = { ( α β β − α ) ( e − α z − e − β z ) , z > 0 0 , z ≤ 0 f(z) = \left\{ \begin{array}{lr} (\frac{\alpha\beta}{\beta-\alpha})\left(e^{-\alpha z}-e^{-\beta z} \right)&, z>0\\ 0 &, z\le0 \end{array} \right. f(z)={(βααβ)(eαzeβz)0,z>0,z0

f ( z ) = { ( 1 1 α − 1 β ) ( e − α z − e − β z ) , z > 0 0 , z ≤ 0 f(z) = \left\{ \begin{array}{lr} \left(\frac{1}{\frac{1}{\alpha}-\frac{1}{\beta}}\right)\left(e^{-\alpha z}-e^{-\beta z} \right)&, z>0\\ 0 &, z\le0 \end{array} \right. f(z)={(α1β11)(eαzeβz)0,z>0,z0

相关(线性)

ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) = 0 \rho_{XY} = \frac{Cov{(X,Y)}}{\sqrt{D(X)}\sqrt{D(Y)}}=0 ρXY=D(X) D(Y) Cov(X,Y)=0
E ( X , Y ) = E ( X ) E ( Y ) E(X,Y) = E(X)E(Y) E(X,Y)=E(X)E(Y)
C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0
D ( X , Y ) = D ( x ) + D ( Y ) D(X,Y) = D(x)+D(Y) D(X,Y)=D(x)+D(Y)

独立

P { X ≤ x , Y ≤ y } = P { X ≤ x } P { X ≤ x , Y ≤ y } P\{X\leq x,Y\leq y\} = P\{X\leq x\}P\{X\leq x,Y\leq y\} P{Xx,Yy}=P{Xx}P{Xx,Yy}
F ( x , y ) = F x ( x ) F y ( y ) F(x,y) = F_x(x)F_y(y) F(x,y)=Fx(x)Fy(y)
f ( x , y ) = f X ( x ) f Y ( y ) 在 平 面 上 几 乎 处 处 成 立 f(x,y) = f_X(x)f_Y(y)在平面上几乎处处成立 f(x,y)=fX(x)fY(y)

伽马函数

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。
Γ ( x ) = ∫ 0 + ∞ t x − 1 e − t d t ( x > 0 ) \Gamma(x) = \int\limits_{0}^{+\infty}t^{x-1}e^{-t}dt (x>0) Γ(x)=0+tx1etdt(x>0)

性质

Γ ( x + 1 ) = x Γ ( x ) \Gamma(x+1) = x\Gamma(x) Γ(x+1)=xΓ(x)
Γ ( n ) = ( n − 1 ) ! \Gamma(n) = (n-1)! Γ(n)=(n1)!

大数定律及中心极限定理

弱大数定律

设 X 1 , X 2 , ⋯ 是 相 互 独 立 的 , 服 从 同 一 分 布 的 , 随 机 变 量 序 列 , 且 E ( X k ) = μ . 设X_1, X_2, \cdots是相互独立的,服从同一分布的,随机变量序列,且E(X_k) = \mu. X1,X2,E(Xk)=μ.
作 前 n 个 变 量 的 算 数 平 均 1 n ∑ k = 1 n X k , 则 对 于 任 意 的 ε > 0 , 有 作前n个变量的算数平均\frac{1}{n}\sum_{k=1}^n X_k,则对于任意的\varepsilon>0,有 nn1k=1nXk,ε>0,

lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 \begin{aligned} \lim_{n\to \infty} P{\left\{\left \vert {\frac{1}{n}\sum_{k=1}^{n}X_k-\mu} \right \vert< \varepsilon \right\}}=1 \end{aligned} nlimP{n1k=1nXkμ<ε}=1

伯努利大数定律

lim ⁡ n → ∞ P { ∣ ∑ k = 1 n f A n − p ∣ < ε } = 1 \begin{aligned} \lim_{n\to \infty} P{\left\{\left \vert {\sum_{k=1}^{n}{\frac{f_A}{n}}-p} \right \vert< \varepsilon \right\}}=1 \end{aligned} nlimP{k=1nnfAp<ε}=1

lim ⁡ n → ∞ P { ∣ ∑ k = 1 n f A n − p ∣ ≥ ε } = 0 \begin{aligned} \lim_{n\to \infty} P{\left\{\left \vert {\sum_{k=1}^{n}{\frac{f_A}{n}}-p} \right \vert \geq \varepsilon \right\}}=0 \end{aligned} nlimP{k=1nnfApε}=0

中心极限定理

独立同分布

E ( X k ) = μ , D ( X k ) = σ 2 > 0 E(X_k) = \mu,D(X_k) = \sigma^2>0 E(Xk)=μ,D(Xk)=σ2>0
随 机 变 量 之 和 ∑ k = 1 n X k 的 标 准 化 变 量 Y n = ∑ k = 1 n X k − n μ n σ 随机变量之和\sum_{k=1}^nX_k的标准化变量Y_n=\frac{\sum_{k=1}^nX_k-n\mu}{\sqrt{n}\sigma} k=1nXkYn=n σk=1nXknμ

抽样分布

1 2 π ∫ − ∞ ∞ t 2 e − t 2 / 2 \frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}t^2e^{{-t^2}/{2}} 2π 1t2et2/2

样本方差

S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ) ˉ 2 = 1 n − 1 ∑ i = 1 n ( X i 2 + X ˉ 2 − 2 X i X ˉ ) S^2 =\frac{1}{n-1}\sum_{i=1}^{n}{(X_i-\bar{X)}^2} =\frac{1}{n-1}\sum_{i=1}^{n}{(X_i^2 + \bar{X}^2 - 2X_i\bar{X})} S2=n11i=1n(XiX)ˉ2=n11i=1n(Xi2+Xˉ22XiXˉ)
= 1 n − 1 ( ∑ i = 1 n X i 2 − n X ˉ 2 ) = \frac{1}{n-1}\left ({\sum_{i=1}^{n}{X_i^2-n \bar{X}^2} }\right) =n11(i=1nXi2nXˉ2)

正态总体样本均值与样本方差的分布

E ( X ˉ ) = μ E(\bar X) = \mu E(Xˉ)=μ
D ( X ˉ ) = 1 n σ 2 D(\bar X) = \frac{1}{n}\sigma^2 D(Xˉ)=n1σ2
E ( X ˉ 2 ) = D ( X ˉ ) + E ( X ˉ ) 2 = μ 2 + σ 2 n E({\bar X}^2) = D(\bar X) + E(\bar X)^2 = \mu^2 + \frac{\sigma^2}{n} E(Xˉ2)=D(Xˉ)+E(Xˉ)2=μ2+nσ2
E ( S 2 ) = σ 2 E(S^2) = \sigma^2 E(S2)=σ2

χ 2 \chi^2 χ2分布

χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 \chi^2 = X_1^2 + X_2^2 + \cdots + X_n^2 χ2=X12+X22++Xn2

1. χ 2 \chi^2 χ2分布的可加性

χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) \chi_1^2+\chi_2^2 \sim \chi^2(n_1+n_2) χ12+χ22χ2(n1+n2)

2.期望与方差

E ( χ 2 ) = n E(\chi^2) = n E(χ2)=n
D ( χ 2 ) = 2 n D(\chi^2) = 2n D(χ2)=2n
Y = ( X 1 + X 2 ) 2 + ( X 3 + X 4 ) 2 Y = (X_1+X_2)^2+(X_3+X_4)^2 Y=(X1+X2)2+(X3+X4)2

t t t分布

设 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , 且 X , Y 相 互 独 立 设X\sim N(0,1),Y\sim \chi^2(n),且X,Y相互独立 XN(0,1),Yχ2(n),X,Y
t = X Y / n 服 从 自 由 度 为 n 的 t 分 布 t ∼ t ( n ) t = \frac{X}{\sqrt{Y/n}}服从自由度为n的t分布t\sim t(n) t=Y/n Xnttt(n)

对称性

由对称性可知,上 α \alpha α 分位数 t 1 − a ( n ) = − t a ( n ) t_{1-a}(n)=-t_a(n) t1a(n)=ta(n)

F F F分布

设 U ∼ χ 2 ( n 1 ) , V ∼ χ 2 ( n 2 ) , 且 U , V 相 互 独 立 , 则 随 机 变 量 设U \sim \chi^2(n_1),V \sim \chi^2(n_2),且U,V相互独立,则随机变量 Uχ2(n1),Vχ2(n2),U,V
F = U / n 1 V / n 2 F = \frac{U/n_1}{V/n_2} F=V/n2U/n1
服 从 自 由 度 为 ( n 1 , n 2 ) 的 F 分 布 , 记 为 F ∼ F ( n 1 , n 2 ) 服从自由度为(n_1,n_2)的F分布,记为F\sim F(n_1, n_2) (n1,n2)F,FF(n1,n2)

上分位数

1 F ∼ F ( n 2 , n 1 ) \frac{1}{F} \sim F(n_2,n_1) F1F(n2,n1)
F 1 − a ( n 1 , n 2 ) = 1 F a ( n 2 , n 1 ) F_{1-a}(n_1,n_2) = \frac{1}{F_a(n_2,n_1)} F1a(n1,n2)=Fa(n2,n1)1

三种分布的一些定理

设 X 1 , X 2 , ⋯ X n 是 来 自 正 态 总 体 N ( μ , σ 2 ) 的 样 本 , X ˉ 是 样 本 均 值 , 则 : 设X_1,X_2,\cdots X_n是来自正态总体N(\mu,\sigma^2)的样本,\bar X是样本均值,则: X1,X2,XnN(μ,σ2)Xˉ
X ˉ ∼ ( μ , σ 2 n ) \bar X \sim (\mu,\frac{\sigma^2}{n}) Xˉ(μ,nσ2)

1

设 X 1 , X 2 , ⋯ X n 是 来 自 正 态 总 体 N ( μ , σ 2 ) 的 样 本 , X ˉ 是 样 本 均 值 , S 2 是 样 本 方 差 , 则 : 设X_1,X_2,\cdots X_n是来自正态总体N(\mu,\sigma^2)的样本,\bar X是样本均值,S^2是样本方差,则: X1,X2,XnN(μ,σ2)XˉS2
( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n1)S2χ2(n1)
X ˉ 与 S 2 相 互 独 立 \bar{X}与S^2相互独立 XˉS2

2

设 X 1 , X 2 , ⋯ X n 是 来 自 正 态 总 体 N ( μ , σ 2 ) 的 样 本 , X ˉ 是 样 本 均 值 , S 2 是 样 本 方 差 , 则 : 设X_1,X_2,\cdots X_n是来自正态总体N(\mu,\sigma^2)的样本,\bar X是样本均值,S^2是样本方差,则: X1,X2,XnN(μ,σ2)XˉS2
X ˉ − μ S / n ∼ t ( n − 1 ) \frac{\bar X-\mu}{S/\sqrt n}\sim t(n-1) S/n Xˉμt(n1)
证明(标准正态分布除以卡方分布配(n-1)即可):
X ˉ − μ σ / n / ( n − 1 ) S 2 ( n − 1 ) σ 2 {\frac{\bar X-\mu}{\sigma/\sqrt n}}/\sqrt{\frac{(n-1)S^2}{(n-1)\sigma^2}} σ/n Xˉμ/(n1)σ2(n1)S2

3

设 X 1 , X 2 , ⋯   , X n 与 Y 1 , Y 2 , ⋯   , Y n 分 别 是 来 自 正 态 总 体 分 布 N ( μ 1 , σ 1 2 ) 和 N ( μ 2 , σ 2 2 ) 的 样 本 , 且 两 个 样 本 相 互 独 立 设X_1,X_2,\cdots,X_n与Y_1,Y_2,\cdots,Y_n分别是来自正态总体分布N(\mu_1,\sigma_1^2)和N(\mu_2,\sigma_2^2)的样本,且两个样本相互独立 X1,X2,,XnY1,Y2,,YnN(μ1,σ12)N(μ2,σ22)

1

S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1, n_2-1) σ12/σ22S12/S22F(n11,n21)

2

当 σ 1 2 = σ 2 2 = σ 2 时 当\sigma_1^2 = \sigma_2^2 = \sigma^2时 σ12=σ22=σ2
( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \frac{(\bar X-\bar Y)-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) Swn11+n21 (XˉYˉ)(μ1μ2)t(n1+n22)
S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 S_w^2 = \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} Sw2=n1+n22(n11)S12+(n21)S22

  • 1
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值