机器学习笔记之指数族分布——指数族分布介绍

机器学习笔记之指数族分布——指数族分布介绍

引言

本节及后续小节将从指数族分布 → \to 熵、最大熵原理 → sigmoid,softmax \to \text{sigmoid,softmax} sigmoid,softmax函数的思路进行介绍。

指数族分布介绍

指数族分布( Exponential Families of Distributions \text{Exponential Families of Distributions} Exponential Families of Distributions),它不是某一个分布,而是满足某种条件的分布集合。从名字可以看出,指数族分布描述的概率分布指数相关。指数族分布的统一格式表示如下
P ( x ∣ η ) = h ( x ) exp ⁡ { η T ϕ ( x ) − A ( η ) } \mathcal P(x \mid \eta) = h(x) \exp \left\{\eta^{T} \phi(x) - A(\eta) \right\} P(xη)=h(x)exp{ ηTϕ(x)A(η)}

如果只看公式等号左边 → P ( x ∣ η ) \to P(x \mid \eta) P(xη),在介绍极大似然估计与最大后验概率估计中介绍过,它可以表示为 基于参数向量 η \eta η生成随机样本 x x x的概率模型

我们称:

  • ϕ ( x ) \phi(x) ϕ(x)充分统计量,它可以理解成样本的函数—— 如果已知充分统计量,就可以通过该统计量得到完整的概率分布表达形式
    在后续的公式推导中进行证明。
  • η \eta η表示生成概率模型 P ( x ∣ η ) P(x \mid \eta) P(xη)的参数向量;
  • h ( x ) h(x) h(x)仅表示关于 x x x的一个函数,在一些具体分布中(如高斯分布、伯努利分布)通常以常数形式出现;
  • A ( η ) A(\eta) A(η)通常表示为 log ⁡ \log log配分函数(对数配分函数)( log Partition Function \text{log Partition Function} log Partition Function),在指数族分布主要起归一化作用,其本质是关于模型参数 η \eta η的函数;
    因此,指数族分布还有另一种常见表达形式(将 A ( η ) A(\eta) A(η)提出来):
    P ( x ∣ η ) = h ( x ) exp ⁡ { η T ⋅ ϕ ( x ) } ⋅ exp ⁡ { − A ( η ) } = 1 exp ⁡ { A ( η ) } ⋅ h ( x ) exp ⁡ { η T ⋅ ϕ ( x ) } \begin{aligned} \mathcal P(x \mid \eta) & = h(x) \exp \left\{\eta^{T} \cdot \phi(x) \right\} \cdot \exp \{-A(\eta)\} \\ & = \frac{1}{\exp \{A(\eta)\}} \cdot h(x) \exp \left\{\eta^{T} \cdot \phi(x) \right\} \end{aligned} P(xη)=h(x)exp{ ηTϕ(x)}exp{ A(η)}=exp{ A(η)}1h(x)exp{ ηTϕ(x)}
    exp ⁡ { A ( η ) } = Z \exp \{A(\eta) \} = \mathcal Z exp{ A(η)}=Z( Z \mathcal Z Z表示 配分函数);原始表示为:
    1 Z h ( x ) ⋅ exp ⁡ { η T ⋅ ϕ ( x ) } \frac{1}{\mathcal Z} h(x) \cdot \exp \{\eta^{T} \cdot \phi(x) \} Z1h(x)exp{ ηTϕ(x)}
    因此, A ( η ) = log ⁡ Z A(\eta) = \log \mathcal Z A(η)=logZ。 这也是 A ( η ) A(\eta) A(η)对数配分函数的由来。
    配分函数相关:传送门

指数族分布应用广泛,如广义线性模型( Generalized Linear Model,GLM \text{Generalized Linear Model,GLM} Generalized Linear Model,GLM),概率图中的无向图模型如受限玻尔兹曼机( Restricted Boltzmann Machine,RBM \text{Restricted Boltzmann Machine,RBM} Restricted Boltzmann Machine,RBM)均存在指数族分布的理论支撑
甚至在深度强化学习中,使用策略梯度方法求解强化学习任务时,需要使用 Softmax \text{Softmax} Softmax函数将离散型的动作映射成具有连续性质的指数族分布。

常见指数族分布

我们在概率论与数理统计中学习到的大部分分布都是指数族分布,下面列举一些常见分布:

  • 高斯分布( Normal Distribution \text{Normal Distribution} Normal Distribution);
  • 伯努利分布( Bernoulli Distribution \text{Bernoulli Distribution} Bernoulli Distribution);
  • 二项分布( Binomial Distribution \text{Binomial Distribution} Binomial Distribution);
  • 泊松分布( Poisson Distribution \text{Poisson Distribution} Poisson Distribution);
  • 贝塔分布( Beta Distribution \text{Beta Distribution} Beta Distribution);
  • 狄利克雷分布( Dirichlet Distribution \text{Dirichlet Distribution} Dirichlet Distribution);
  • 伽马分布( Gamma Distribution \text{Gamma Distribution} Gamma Distribution)等等。

下面对伯努利分布、高斯分布、二项分布进行推导,观察经过变化后的分布和指数族分布统一格式之间的关联关系。

推导过程

  • 伯努利分布
    P ( x ) = p x ⋅ ( 1 − p ) 1 − x = { p if x = 1 q if x = 0 \mathcal P(x) = p^x \cdot (1 - p)^{1-x} = \begin{cases} p \quad \text{if} \quad x = 1 \\ q \quad \text{if} \quad x = 0 \end{cases} P(x)=px(1p)1x={ pifx=1qifx=0

    将上述公式进行变化:

    • 插入 exp ⁡ \exp exp完全展开
      P ( x ) = p x ⋅ ( 1 − p ) 1 − x = exp ⁡ { log ⁡ [ p x ( 1 − p ) 1 − x ] } = exp ⁡ { x ⋅ log ⁡ [ p 1 − p ] + log ⁡ ( 1 − p ) } \begin{aligned} \mathcal P(x) & = p^x \cdot (1 - p)^{1-x} \\ & = \exp \{\log \left[p^x(1 - p)^{1-x} \right] \} \\ & = \exp \left\{x \cdot \log \left[\frac{p}{1- p}\right] + \log (1- p) \right\} \end{aligned} P(x)=px(1p)1x=exp{ log[px(1p)1x]}=exp{ xlog[1pp]+log(1p)}
    • η = log ⁡ p 1 − p \begin{aligned} \eta = \log\frac{p}{1 - p} \end{aligned} η=log1pp,那么 p p p η \eta η表示为:
      p = exp ⁡ { η } 1 + exp ⁡ { η } p = \frac{\exp \{\eta\}}{1 + \exp \{\eta \}} p=1+exp{ η}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值