机器学习笔记之隐马尔可夫模型(一)概率模型背景的阶段性介绍

引言

从本节开始将介绍同为概率生成模型隐马尔可夫模型(Hidden Markov Model,HMM)。在介绍隐马尔可夫模型之前,对概率模型的整个逻辑进行阶段性介绍。

概率模型的阶段性介绍

频率学派求解模型的特点

极大似然估计与最大后验概率估计中介绍过,频率学派的思想是将概率模型 P ( X ∣ θ ) P(\mathcal X \mid \theta) P(Xθ)中的参数 θ \theta θ视作一个未知常量,通过求解 θ \theta θ实现求解概率模型 P ( X ∣ θ ) P(\mathcal X \mid \theta) P(Xθ)

频率学派针对的核心问题可看作是优化问题。何为优化问题
它的具体流程可以表示如下:

  • 首先,针对具体任务,将模型(Model)定义出来;

  • 基于模型结合任务以及样本点的性质,构建出相应的策略(Strategy):它是关于衡量模型参数的工具,即通过构建损失函数(Loss Function)来描述模型参数 θ \theta θ任务结果 之间的关联关系

  • 算法部分,针对构建好的策略,求解最优模型参数 θ ^ \hat \theta θ^,从而求解概率模型 P ( X ∣ θ ) P(\mathcal X \mid \theta) P(Xθ)
    常见的模型参数求解方法有:

    • 求解析解:极大似然估计(Maximum Likelihood Estimate,MLE);
    • 求迭代解:EM算法(Expectation-Maximization algorithm, EM);梯度下降(Gradient Descent,GD);牛顿法(Newton’s Method),自适应运动估计算法(Adaptive Momentum,Adam)等等。
  • 示例1:感知机算法(Perceptron)

    • 模型表示:
      f ( W , b ) = s i g n ( W T x ( i ) + b ) ( i = 1 , 2 , ⋯   , N ) f(\mathcal W,b) = sign(\mathcal W^{T}x^{(i)} + b) \quad (i=1,2,\cdots,N) f(W,b)=sign(WTx(i)+b)(i=1,2,,N)
    • 策略设计:
      L ( W , b ) = ∑ ( x ( i ) , y ( i ) ) ∈ D − y ( i ) ( W T x ( i ) + b ) ( D = { ( x ( i ) , y ( i ) ) ∣ y ( i ) ( W T x ( i ) + b ) < 0 } ) \mathcal L(\mathcal W,b) = \sum_{(x^{(i)},y^{(i)}) \in \mathcal D} -y^{(i)}\left(\mathcal W^{T}x^{(i)} + b\right) \quad (\mathcal D = \{(x^{(i)},y^{(i)}) \mid y^{(i)}\left(\mathcal W^{T}x^{(i)} + b\right) < 0\}) L(W,b)=(x(i),y(i))Dy(i)(WTx(i)+b)(D={(x(i),y(i))y(i)(WTx(i)+b)<0})
    • 算法过程:梯度下降
      W ( t + 1 ) ← W ( t ) − λ ∇ W W ( W , b ) \mathcal W^{(t+1)} \gets \mathcal W^{(t)} - \lambda \nabla_{\mathcal W} \mathcal W(\mathcal W,b) W(t+1)W(t)λWW(W,b)
  • 示例2:线性回归(Linear Regression)

    • 模型表示:
      f ( W , b ) = W T x ( i ) + b ( i = 1 , 2 , ⋯   , N ) f(\mathcal W,b) = \mathcal W^{T}x^{(i)} + b \quad (i=1,2,\cdots,N) f(W,b)=WTx(i)+b(i=1,2,,N)
    • 策略设计:最小二乘估计(Least Squares estimation,LS)
      L ( W , b ) = ∑ i = 1 N ∣ ∣ W T x ( i ) + b − y ( i ) ∣ ∣ 2 \mathcal L(\mathcal W,b) = \sum_{i=1}^N ||\mathcal W^{T}x^{(i)} + b - y^{(i)}||^2 L(W,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值