机器学习笔记之核方法(二)正定核函数的充要性证明

引言

上一节介绍了核方法思想核函数,本节将介绍正定核函数的充要性证明

回顾:核函数与正定核函数

首先,(Kernal)表示两个样本空间的映射,将 p p p维特征空间映射至一维实数域的映射:
κ ( x ( i ) , x ( j ) ) → R ∀ x ( i ) , x ( j ) ∈ X ; x ( i ) , x ( j ) ∈ R p \kappa(x^{(i)},x^{(j)}) \to \mathbb R \quad \forall x^{(i)},x^{(j)} \in \mathcal X;x^{(i)},x^{(j)} \in \mathbb R^p κ(x(i),x(j))Rx(i),x(j)X;x(i),x(j)Rp

正定核函数在核函数的基础上,表示将特征空间 x ( i ) , x ( j ) x^{(i)},x^{(j)} x(i),x(j)经过非线性转换得到的高维特征空间 ϕ ( x ( i ) ) , ϕ ( x ( j ) ) \phi(x^{(i)}),\phi(x^{(j)}) ϕ(x(i)),ϕ(x(j))之间的内积
κ ( x ( i ) , x ( j ) ) = ⟨ ϕ ( x ( i ) ) , ϕ ( x ( j ) ) ⟩ = [ ϕ ( x ( i ) ) ] T ϕ ( x ( j ) ) x ( i ) , x ( j ) ∈ X \begin{aligned} \kappa(x^{(i)},x^{(j)}) & = \left\langle\phi(x^{(i)}),\phi(x^{(j)})\right\rangle \\ & = \left[\phi(x^{(i)})\right]^T \phi(x^{(j)}) \quad x^{(i)},x^{(j)} \in \mathcal X \end{aligned} κ(x(i),x(j))=ϕ(x(i)),ϕ(x(j))=[ϕ(x(i))]Tϕ(x(j))x(i),x(j)X

正定核函数的性质

  • 对称性正定核函数作为两特征空间作为输入的函数,特征空间的输入顺序不影响函数结果:
    κ ( x ( i ) , x ( j ) ) = κ ( x ( j ) , x ( i ) ) \kappa(x^{(i)},x^{(j)}) = \kappa(x^{(j)},x^{(i)}) κ(x(i),x(j))=κ(x(j),x(i))
  • 正定性:如果 κ ( ⋅ , ⋅ ) \kappa(\cdot,\cdot) κ(,)正定核函数,那么从样本集合 X \mathcal X X中任取 N N N个样本 x ( 1 ) , x ( 2 ) , ⋯   , x ( N ) ∈ X x^{(1)},x^{(2)},\cdots,x^{(N)} \in \mathcal X x(1),x(2),,x(N)X对应的核矩阵 K \mathcal K K总是半正定的核矩阵 K \mathcal K K表示如下:
    K = [ κ ( x ( 1 ) , x ( 1 ) ) , κ ( x ( 1 ) , x ( 2 ) ) , ⋯   , κ ( x ( 1 ) , x ( N ) ) κ ( x ( 2 ) , x ( 1 ) ) , κ ( x ( 2 ) , x ( 2 ) ) , ⋯   , κ ( x ( 2 ) , x ( N ) ) ⋮ κ ( x ( N ) , x ( 1 ) ) , κ ( x ( N ) , x ( 2 ) ) , ⋯   , κ ( x ( N ) , x ( N ) ) ] N × N \mathcal K = \begin{bmatrix} \kappa(x^{(1)},x^{(1)}),\kappa(x^{(1)},x^{(2)}),\cdots,\kappa(x^{(1)},x^{(N)}) \\ \kappa(x^{(2)},x^{(1)}),\kappa(x^{(2)},x^{(2)}),\cdots,\kappa(x^{(2)},x^{(N)}) \\ \vdots \\ \kappa(x^{(N)},x^{(1)}),\kappa(x^{(N)},x^{(2)}),\cdots,\kappa(x^{(N)},x^{(N)}) \\ \end{bmatrix}_{N \times N} K= κ(x(1),x(1)),κ(x(1),x(2)),,κ(x(1),x(N))κ(x(2),x(1)),κ(x(2),x(2)),,κ(x(2),x(N))κ(x(N),x(1)),κ(x(N),x(2)),,κ(x(N),x(N)) N×N

而这两个性质同样是判定是否为正定核函数的充要条件

正定核函数的充要性证明

证明要求为:已知 κ ( x ( i ) , x ( j ) ) \kappa(x^{(i)},x^{(j)}) κ(x(i),x(j))是正定核函数,证:该函数对应的核矩阵 K \mathcal K K是半正定的,且 κ ( x ( i ) , x ( j ) ) \kappa(x^{(i)},x^{(j)}) κ(x(i),x(j))具有对称性

对称性证明

基于正定核函数的定义:
κ ( x ( i ) , x ( j ) ) = ⟨ ϕ ( x ( i ) ) , ϕ ( x ( j ) ) ⟩ = [ ϕ ( x ( i ) ) ] T ϕ ( x ( j ) ) \kappa(x^{(i)},x^{(j)}) = \left\langle\phi(x^{(i)}),\phi(x^{(j)})\right\rangle =\left[\phi(x^{(i)})\right]^T\phi(x^{(j)}) κ(x(i),x(j))=ϕ(x(i)),ϕ(x(j))=[ϕ(x(i))]Tϕ(x(j))
因而有:
调转变量顺序~
κ ( x ( j ) , x ( i ) ) = ⟨ ϕ ( x ( j ) ) , ϕ ( x ( i ) ) ⟩ = [ ϕ ( x ( j ) ) ] T ϕ ( x ( i ) ) \kappa(x^{(j)},x^{(i)}) = \left\langle\phi(x^{(j)}),\phi(x^{(i)})\right\rangle = \left[\phi(x^{(j)})\right]^T\phi(x^{(i)}) κ(x(j),x(i))=ϕ(x(j)),ϕ(x(i))=[ϕ(x(j))]Tϕ(x(i))
又由于内积运算本身存在交换律,因而有:
[ ϕ ( x ( j ) ) ] T ϕ ( x ( i ) ) = [ ϕ ( x ( i ) ) ] T ϕ ( x ( j ) ) κ ( x ( i ) , x ( j ) ) = κ ( x ( j ) , x ( i ) ) \begin{aligned} \left[\phi(x^{(j)})\right]^T\phi(x^{(i)}) & = \left[\phi(x^{(i)})\right]^T\phi(x^{(j)}) \\ \kappa(x^{(i)},x^{(j)}) & = \kappa(x^{(j)},x^{(i)}) \end{aligned} [ϕ(x(j))]Tϕ(x(i))κ(x(i),x(j))=[ϕ(x(i))]Tϕ(x(j))=κ(x(j),x(i))
因此,正定核函数 κ ( ⋅ , ⋅ ) \kappa(\cdot,\cdot) κ(,)满足对称性

正定性的必要性证明

已知一个方阵 A N × N \mathcal A_{N \times N} AN×N半正定矩阵的充要条件对于任意 N N N维向量 α \alpha α,都有 α T A α ≥ 0 \alpha^T\mathcal A \alpha \geq 0 αTAα0恒成立

定义向量 α \alpha α表示如下:
α = ( α ( 1 ) , α ( 2 ) , ⋯   , α ( N ) ) T \alpha = (\alpha^{(1)},\alpha^{(2)},\cdots,\alpha^{(N)})^T α=(α(1),α(2),,α(N))T
观察 α T K α \alpha^T\mathcal K\alpha αTKα的结果:
α T K α = ( α ( 1 ) , α ( 2 ) , ⋯   , α ( N ) ) 1 × N [ κ ( x ( 1 ) , x ( 1 ) ) , κ ( x ( 1 ) , x ( 2 ) ) , ⋯   , κ ( x ( 1 ) , x ( N ) ) κ ( x ( 2 ) , x ( 1 ) ) , κ ( x ( 2 ) , x ( 2 ) ) , ⋯   , κ ( x ( 2 ) , x ( N ) ) ⋮ κ ( x ( N ) , x ( 1 ) ) , κ ( x ( N ) , x ( 2 ) ) , ⋯   , κ ( x ( N ) , x ( N ) ) ] N × N ( α ( 1 ) α ( 2 ) ⋮ α ( N ) ) N × 1 \begin{aligned} \alpha^T\mathcal K\alpha = (\alpha^{(1)},\alpha^{(2)},\cdots,\alpha^{(N)})_{1 \times N} \begin{bmatrix} \kappa(x^{(1)},x^{(1)}),\kappa(x^{(1)},x^{(2)}),\cdots,\kappa(x^{(1)},x^{(N)}) \\ \kappa(x^{(2)},x^{(1)}),\kappa(x^{(2)},x^{(2)}),\cdots,\kappa(x^{(2)},x^{(N)}) \\ \vdots \\ \kappa(x^{(N)},x^{(1)}),\kappa(x^{(N)},x^{(2)}),\cdots,\kappa(x^{(N)},x^{(N)}) \\ \end{bmatrix}_{N\times N} \begin{pmatrix}\alpha^{(1)} \\ \alpha^{(2)} \\ \vdots \\ \alpha^{(N)}\end{pmatrix}_{N \times 1} \end{aligned} αTKα=(α(1),α(2),,α(N))1×N κ(x(1),x(1)),κ(x(1),x(2)),,κ(x(1),x(N))κ(x(2),x(1)),κ(x(2),x(2)),,κ(x(2),x(N))κ(x(N),x(1)),κ(x(N),x(2)),,κ(x(N),x(N)) N×N α(1)α(2)α(N) N×1
观察上述矩阵/向量格式, α T K α \alpha^T\mathcal K\alpha αTKα最终结果是一个实数。将 α T K α \alpha^T\mathcal K\alpha αTKα继续展开:
α T K α = [ α ( 1 ) ⋅ κ ( x ( 1 ) , x ( 1 ) ) + ⋯ + α ( N ) ⋅ κ ( x ( N ) , x ( 1 ) ) , ⋯   , α ( 1 ) ⋅ κ ( x ( 1 ) , x ( N ) ) + ⋯ + α ( N ) ⋅ κ ( x ( N ) , x ( N ) ) ] ( α ( 1 ) α ( 2 ) ⋮ α ( N ) ) = [ ∑ i = 1 N α ( i ) ⋅ κ ( x ( i ) , x ( 1 ) ) , ⋯   , ∑ i = 1 N α ( i ) κ ( x ( i ) , x ( N ) ) ] ( α ( 1 ) α ( 2 ) ⋮ α ( N ) ) = α ( 1 ) ⋅ ∑ i = 1 N α ( i ) ⋅ κ ( x ( i ) , x ( 1 ) ) + ⋯ + α ( N ) ⋅ ∑ i = 1 N α ( i ) κ ( x ( i ) , x ( N ) ) = ∑ i = 1 N ∑ j = 1 N α ( i ) α ( j ) κ ( x ( i ) , x ( j ) ) \begin{aligned} \alpha^T\mathcal K\alpha & = \left[\alpha^{(1)}\cdot \kappa(x^{(1)},x^{(1)}) + \cdots +\alpha^{(N)} \cdot \kappa(x^{(N)},x^{(1)}),\cdots,\alpha^{(1)}\cdot \kappa(x^{(1)},x^{(N)}) + \cdots +\alpha^{(N)} \cdot \kappa(x^{(N)},x^{(N)})\right] \begin{pmatrix}\alpha^{(1)} \\ \alpha^{(2)} \\ \vdots \\ \alpha^{(N)}\end{pmatrix} \\ & = \left[\sum_{i=1}^N \alpha^{(i)} \cdot \kappa(x^{(i)},x^{(1)}),\cdots,\sum_{i=1}^N\alpha^{(i)} \kappa(x^{(i)},x^{(N)})\right]\begin{pmatrix}\alpha^{(1)} \\ \alpha^{(2)} \\ \vdots \\ \alpha^{(N)}\end{pmatrix} \\ & = \alpha^{(1)} \cdot \sum_{i=1}^N \alpha^{(i)} \cdot \kappa(x^{(i)},x^{(1)}) + \cdots + \alpha^{(N)} \cdot \sum_{i=1}^N\alpha^{(i)} \kappa(x^{(i)},x^{(N)}) \\ & = \sum_{i=1}^N\sum_{j=1}^N \alpha^{(i)}\alpha^{(j)} \kappa(x^{(i)},x^{(j)}) \end{aligned} αTKα=[α(1)κ(x(1),x(1))++α(N)κ(x(N),x(1)),,α(1)κ(x(1),x(N))++α(N)κ(x(N),x(N))] α(1)α(2)α(N) =[i=1Nα(i)κ(x(i),x(1)),,i=1Nα(i)κ(x(i),x(N))] α(1)α(2)α(N) =α(1)i=1Nα(i)κ(x(i),x(1))++α(N)i=1Nα(i)κ(x(i),x(N))=i=1Nj=1Nα(i)α(j)κ(x(i),x(j))
已知正定核函数 κ ( x ( i ) , x ( j ) ) = [ ϕ ( x ( i ) ) ] T ϕ ( x ( j ) ) \kappa(x^{(i)},x^{(j)}) = \left[\phi(x^{(i)})\right]^T\phi(x^{(j)}) κ(x(i),x(j))=[ϕ(x(i))]Tϕ(x(j)),因而有:
α ( i ) , [ ϕ ( x ( i ) ) ] T \alpha^{(i)},\left[\phi(x^{(i)})\right]^T α(i),[ϕ(x(i))]T均不含 j j j,因而从 j j j的视角观察,这两项均视作常数,将它们提到前面。
α T K α = ∑ i = 1 N ∑ j = 1 N α ( i ) α ( j ) [ ϕ ( x ( i ) ) ] T ϕ ( x ( j ) ) = ∑ i = 1 N α ( i ) [ ϕ ( x ( i ) ) ] T ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) \begin{aligned} \alpha^T\mathcal K\alpha & = \sum_{i=1}^N\sum_{j=1}^N \alpha^{(i)}\alpha^{(j)} \left[\phi(x^{(i)})\right]^T\phi(x^{(j)}) \\ & = \sum_{i=1}^N \alpha^{(i)}\left[\phi(x^{(i)})\right]^T \sum_{j=1}^N \alpha^{(j)} \phi(x^{(j)}) \end{aligned} αTKα=i=1Nj=1Nα(i)α(j)[ϕ(x(i))]Tϕ(x(j))=i=1Nα(i)[ϕ(x(i))]Tj=1Nα(j)ϕ(x(j))
继续观察,由于 α ( i ) \alpha^{(i)} α(i)向量 α = ( α ( 1 ) , ⋯   , α ( N ) ) N × 1 T \alpha = (\alpha^{(1)},\cdots,\alpha^{(N)})_{N \times 1}^T α=(α(1),,α(N))N×1T的一个元素,因此而它是一个常数。并且连加符号操作只是对 ϕ ( x ( i ) ) \phi(x^{(i)}) ϕ(x(i))各项元素进行累加运算,不改变向量结果的维度。最终表示为如下形式:
α T K α = [ ∑ i = 1 N α ( i ) ϕ ( x ( i ) ) ] T [ ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) ] = ⟨ ∑ i = 1 N α ( i ) ϕ ( x ( i ) ) , ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) ⟩ \begin{aligned} \alpha^T\mathcal K\alpha & = \left[\sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)})\right]^T \left[\sum_{j=1}^N\alpha^{(j)}\phi(x^{(j)})\right] \\ & = \left\langle\sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)}),\sum_{j=1}^N\alpha^{(j)}\phi(x^{(j)})\right\rangle \end{aligned} αTKα=[i=1Nα(i)ϕ(x(i))]T[j=1Nα(j)ϕ(x(j))]=i=1Nα(i)ϕ(x(i)),j=1Nα(j)ϕ(x(j))
观察,虽然使用 i , j i,j i,j两个符号去遍历 1 , 2 , ⋯   , N 1,2,\cdots,N 1,2,,N,但都是对 α ( ⋅ ) ϕ ( x ( ⋅ ) ) ( ⋅ → i , j ) \alpha^{(\cdot)}\phi(x^{(\cdot)}) \quad (\cdot \to i,j) α()ϕ(x())(i,j)进行计算,因此:
∑ i = 1 N α ( i ) ϕ ( x ( i ) ) = ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) \sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)}) = \sum_{j=1}^N\alpha^{(j)}\phi(x^{(j)}) i=1Nα(i)ϕ(x(i))=j=1Nα(j)ϕ(x(j))
根据向量内积的定义,有:
由于 ∑ i = 1 N α ( i ) ϕ ( x ( i ) ) = ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) \sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)}) = \sum_{j=1}^N\alpha^{(j)}\phi(x^{(j)}) i=1Nα(i)ϕ(x(i))=j=1Nα(j)ϕ(x(j)),意味着向量 ∑ i = 1 N α ( i ) ϕ ( x ( i ) ) \sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)}) i=1Nα(i)ϕ(x(i))和向量 ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) \sum_{j=1}^N\alpha^{(j)}\phi(x^{(j)}) j=1Nα(j)ϕ(x(j))是完全重合的,因此两向量之间夹角 θ = 0 \theta = 0 θ=0
⟨ ∑ i = 1 N α ( i ) ϕ ( x ( i ) ) , ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) ⟩ = ∣ ∑ i = 1 N α ( i ) ϕ ( x ( i ) ) ∣ ⋅ ∣ ∑ j = 1 N α ( j ) ϕ ( x ( j ) ) ∣ cos ⁡ θ = ∣ ∣ ∑ i = 1 N α ( i ) ϕ ( x ( i ) ) ∣ ∣ 2 ≥ 0 \begin{aligned} & \left\langle\sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)}),\sum_{j=1}^N\alpha^{(j)}\phi(x^{(j)})\right\rangle \\ & = |\sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)})|\cdot |\sum_{j=1}^N\alpha^{(j)}\phi(x^{(j)})| \cos \theta \\ & = ||\sum_{i=1}^N\alpha^{(i)}\phi(x^{(i)})||^2 \geq0 \end{aligned} i=1Nα(i)ϕ(x(i)),j=1Nα(j)ϕ(x(j))=i=1Nα(i)ϕ(x(i))j=1Nα(j)ϕ(x(j))cosθ=∣∣i=1Nα(i)ϕ(x(i))20
至此证明 K \mathcal K K半正定矩阵

正定性的充分性证明

证明要求:已知核矩阵 K \mathcal K K是半正定矩阵,求证: κ ( x ( i ) , x ( j ) ) \kappa(x^{(i)},x^{(j)}) κ(x(i),x(j))是正定核函数

证明:
由于 K \mathcal K K半正定矩阵,那么 K \mathcal K K必包含 N N N线性无关的特征向量。因此根据实对称矩阵的定义,对 K \mathcal K K进行特征分解
K = V Λ V T \mathcal K = \mathcal V\Lambda\mathcal V^T K=VΛVT
对上述相关向量进行定义:
V = ( v 1 , v 2 , ⋯   , v N ) N × N Λ = ( λ 1 λ 2 ⋱ λ N ) N × N \mathcal V = (v_1,v_2,\cdots,v_N)_{N\times N} \quad \Lambda = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & &\ddots \\ & & &\lambda_N \end{pmatrix}_{N \times N} V=(v1,v2,,vN)N×NΛ= λ1λ2λN N×N
至此,矩阵 K \mathcal K K表示如下:
注意: λ i ( i = 1 , 2 , ⋯   , N ) \lambda_i(i=1,2,\cdots,N) λi(i=1,2,,N)表示常数; v i ( i = 1 , 2 , ⋯   , N ) v_i(i=1,2,\cdots,N) vi(i=1,2,,N)表示 N × 1 N \times 1 N×1的列向量。
K = ( v 1 , v 2 , ⋯   , v N ) ( λ 1 λ 2 ⋱ λ N ) ( v 1 T v 2 T ⋮ v N T ) = ( λ 1 v 1 , λ 2 v 2 , ⋯   , λ N v N ) ( v 1 T v 2 T ⋮ v N T ) = λ 1 v 1 v 1 T + λ 2 v 2 v 2 T + ⋯ + λ N v N v N T = ∑ i = 1 N λ i v i v i T \begin{aligned} \mathcal K & = (v_1,v_2,\cdots,v_N) \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & &\ddots \\ & & &\lambda_N \end{pmatrix}\begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_N^T\end{pmatrix} \\ & = (\lambda_1 v_1,\lambda_2v_2,\cdots,\lambda_N v_N)\begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_N^T\end{pmatrix}\\ & = \lambda_1v_1v_1^T + \lambda_2v_2v_2^T + \cdots +\lambda_Nv_Nv_N^T \\ & = \sum_{i=1}^N\lambda_i v_i v_i^T \end{aligned} K=(v1,v2,,vN) λ1λ2λN v1Tv2TvNT =(λ1v1,λ2v2,,λNvN) v1Tv2TvNT =λ1v1v1T+λ2v2v2T++λNvNvNT=i=1NλiviviT

至此,通过特征值分解得到了关于 K \mathcal K K的描述。使用 λ , v \lambda,v λ,v重新对 K \mathcal K K进行描述。
在对 K \mathcal K K描述之前,我们对 v i v_i vi 进行描述。 v i v_i vi本质上是 N N N个任取样本第 i i i维度结果构成的向量
这里 v i k ( k = 1 , 2 , ⋯   , N ) v_i^{k}(k=1,2,\cdots,N) vik(k=1,2,,N)表示一个实数。是个一维信息。
v i = ( v i ( 1 ) , v i ( 2 ) , ⋯   , v i ( N ) ) N × 1 T v_i = (v_i^{(1)},v_i^{(2)},\cdots,v_i^{(N)})^T_{N \times 1} vi=(vi(1),vi(2),,vi(N))N×1T
半正定矩阵 K \mathcal K K的描述如下:
∑ i = 1 N λ i \sum_{i=1}^N\lambda_i i=1Nλi看做常数,直接带入即可。
K = ∑ i = 1 N λ i v i v i T = ∑ i = 1 N λ i ( v i ( 1 ) v i ( 2 ) ⋮ v i ( N ) ) ( v i ( 1 ) , v i ( 2 ) , ⋯   , v i ( N ) ) = ( ∑ i = 1 N λ i v i ( 1 ) v i ( 1 ) , ∑ i = 1 N λ i v i ( 1 ) v i ( 2 ) , ⋯   , ∑ i = 1 N λ i v i ( 1 ) v i ( N ) ∑ i = 1 N λ i v i ( 2 ) v i ( 1 ) , ∑ i = 1 N λ i v i ( 2 ) v i ( 2 ) , ⋯   , ∑ i = 1 N λ i v i ( 2 ) v i ( N ) ⋮ ∑ i = 1 N λ i v i ( N ) v i ( 1 ) , ∑ i = 1 N λ i v i ( N ) v i ( 2 ) , ⋯   , ∑ i = 1 N λ i v i ( N ) v i ( N ) ) N × N \begin{aligned} \mathcal K &= \sum_{i=1}^N\lambda_i v_i v_i^T \\ & = \sum_{i=1}^N\lambda_i \begin{pmatrix}v_i^{(1)}\\v_i^{(2)}\\ \vdots \\ v_i^{(N)}\end{pmatrix}(v_i^{(1)},v_i^{(2)},\cdots,v_i^{(N)}) \\ & = \begin{pmatrix} \sum_{i=1}^N \lambda_iv_i^{(1)}v_i^{(1)},\sum_{i=1}^N \lambda_iv_i^{(1)}v_i^{(2)},\cdots,\sum_{i=1}^N \lambda_iv_i^{(1)}v_i^{(N)} \\ \sum_{i=1}^N \lambda_iv_i^{(2)}v_i^{(1)},\sum_{i=1}^N \lambda_iv_i^{(2)}v_i^{(2)},\cdots,\sum_{i=1}^N \lambda_iv_i^{(2)}v_i^{(N)} \\ \vdots \\ \sum_{i=1}^N \lambda_iv_i^{(N)}v_i^{(1)},\sum_{i=1}^N \lambda_iv_i^{(N)}v_i^{(2)},\cdots,\sum_{i=1}^N \lambda_iv_i^{(N)}v_i^{(N)} \\ \end{pmatrix}_{N \times N} \end{aligned} K=i=1NλiviviT=i=1Nλi vi(1)vi(2)vi(N) (vi(1),vi(2),,vi(N))= i=1Nλivi(1)vi(1),i=1Nλivi(1)vi(2),,i=1Nλivi(1)vi(N)i=1Nλivi(2)vi(1),i=1Nλivi(2)vi(2),,i=1Nλivi(2)vi(N)i=1Nλivi(N)vi(1),i=1Nλivi(N)vi(2),,i=1Nλivi(N)vi(N) N×N
为了表达方便,将上述矩阵中的每一项元素改写成如下形式。这里以 j j j行,第 k k k的元素 ∑ i = 1 N λ i v i ( j ) v i ( k ) \sum_{i=1}^N \lambda_iv_i^{(j)}v_i^{(k)} i=1Nλivi(j)vi(k)为例:
矩阵乘法~
λ ( j ) , λ ( k ) \sqrt{\lambda^{(j)}},\sqrt{\lambda^{(k)}} λ(j) ,λ(k) 均是常数,可以提出来。
∑ i = 1 N λ i v i ( j ) v i ( k ) = ∑ i = 1 N λ i ( j ) λ i ( k ) v i ( j ) v i ( k ) = ∑ i = 1 N ( λ i ( j ) v i ( j ) ) ( λ i ( k ) v i ( k ) ) = ( λ ( j ) v ( j ) ) T ( λ ( k ) v ( k ) ) = λ ( j ) λ ( k ) [ v ( j ) ] T ⋅ v ( k ) \begin{aligned} \sum_{i=1}^N \lambda_iv_i^{(j)}v_i^{(k)} & = \sum_{i=1}^N \sqrt{\lambda_i^{(j)}\lambda_i^{(k)}}v_i^{(j)}v_i^{(k)} \\ & = \sum_{i=1}^N \left(\sqrt{\lambda_i^{(j)}}v_i^{(j)}\right)\left(\sqrt{\lambda_i^{(k)}}v_i^{(k)}\right) \\ & = \left(\sqrt{\lambda^{(j)}}v^{(j)}\right)^T\left(\sqrt{\lambda^{(k)}}v^{(k)}\right) \\ & = \sqrt{\lambda^{(j)}\lambda^{(k)}} \left[v^{(j)}\right]^T\cdot v^{(k)} \end{aligned} i=1Nλivi(j)vi(k)=i=1Nλi(j)λi(k) vi(j)vi(k)=i=1N(λi(j) vi(j))(λi(k) vi(k))=(λ(j) v(j))T(λ(k) v(k))=λ(j)λ(k) [v(j)]Tv(k)

ϕ ( x ( j ) ) = λ ( j ) v ( j ) , ϕ ( x ( k ) ) = λ ( k ) v ( k ) \phi(x^{(j)}) = \sqrt{\lambda^{(j)}}v^{(j)},\phi(x^{(k)}) = \sqrt{\lambda^{(k)}}v^{(k)} ϕ(x(j))=λ(j) v(j),ϕ(x(k))=λ(k) v(k),则有:
κ ( x ( j ) , x ( k ) ) = ∑ i = 1 N λ i v i ( j ) v i ( k ) = λ ( j ) λ ( k ) [ v ( j ) ] T ⋅ v ( k ) = ( λ ( j ) v ( j ) ) T ( λ ( k ) v ( k ) ) = [ ϕ ( x ( j ) ) ] T ϕ ( x ( k ) ) \begin{aligned} \kappa(x^{(j)},x^{(k)}) & = \sum_{i=1}^N \lambda_i v_i^{(j)}v_i^{(k)} \\ & = \sqrt{\lambda^{(j)}\lambda^{(k)}} \left[v^{(j)}\right]^T \cdot v^{(k)} \\ & = \left(\sqrt{\lambda^{(j)}}v^{(j)}\right)^T\left(\sqrt{\lambda^{(k)}}v^{(k)}\right)\\ & = \left[\phi(x^{(j)})\right]^T\phi(x^{(k)}) \\ \end{aligned} κ(x(j),x(k))=i=1Nλivi(j)vi(k)=λ(j)λ(k) [v(j)]Tv(k)=(λ(j) v(j))T(λ(k) v(k))=[ϕ(x(j))]Tϕ(x(k))
证毕。
至此,核函数部分相关介绍结束,下一节将继续介绍概率图模型中的高斯图

相关参考:
点积——百度百科
特征分解——百度百科
机器学习中的核函数与核方法
机器学习-核方法(3)-正定核充要条件-必要性证明

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值