正定核函数插值误差分析

本文分析了正定核函数插值的误差,并探讨了逼近阶问题。通过泰勒展开和二次型理论,研究了误差函数的上界,并给出了保持n次多项式的序列条件,证明了逼近阶的成立。
摘要由CSDN通过智能技术生成

对正定核函数 Φ : X × X → R \Phi:X\times X\to\mathbb{R} Φ:X×XR和采样点 X : = { x i } i = 1 N ⊂ X \mathcal{X}\coloneqq\left\{x_i\right\}_{i=1}^N\subset X X:={ xi}i=1NX,其对应的插值基函数应为
u i ∗ = ∑ j = 1 N [ Φ − 1 ] i j Φ ( ⋅ , x j ) , u_i^\ast=\sum_{j=1}^N\left[\Phi^{-1}\right]_{ij}\Phi\left(\cdot,x_j\right), ui=j=1N[Φ1]ijΦ(,xj),

其中 Φ : = [ Φ ( x i , x j ) ] i j \Phi\coloneqq\left[\Phi\left(x_i,x_j\right)\right]_{ij} Φ:=[Φ(xi,xj)]ij。由此,对任意 f ∈ span ‾ ⟨ Φ ( ⋅ , x ) ⟩ x ∈ X f\in \overline{\text{span}}\left\langle\Phi\left(\cdot,x\right)\right\rangle_{x\in X} fspanΦ(,x)xX,对应插值函数应为
Q f : = ∑ i = 1 N f ( x i ) u i ∗ . \mathcal{Q}f\coloneqq\sum_{i=1}^Nf\left(x_i\right)u_i^\ast. Qf:=i=1Nf(xi)ui.

以下考察误差函数
E f : = f − Q f . \mathcal{E}f\coloneqq f-\mathcal{Q}f. Ef:=fQf.

对任意 x ∈ X x\in X xX,有
∣ [ E f ] ( x ) ∣ = ∣ ⟨ f , Φ ( ⋅ , x ) − ∑ i = 1 N u i ∗ ( x ) Φ ( ⋅ , x i ) ⟩ ∣ ≤ ∥ f ∥ ∥ Φ ( ⋅ , x ) − ∑ i = 1 N u i ∗ ( x ) Φ ( ⋅ , x i ) ∥ . \begin{aligned} \left|\left[\mathcal{E}f\right]\left(x\right)\right|&=\left|\left\langle f,\Phi\left(\cdot,x\right)-\sum_{i=1}^Nu_i^\ast\left(x\right)\Phi\left(\cdot,x_i\right)\right\rangle\right|\\ &\leq\left\|f\right\|\left\|\Phi\left(\cdot,x\right)-\sum_{i=1}^Nu_i^\ast\left(x\right)\Phi\left(\cdot,x_i\right)\right\|. \end{aligned} [Ef](x)=f,Φ(,x)i=1Nui(x)Φ(,xi)fΦ(,x)i=1Nui(x)Φ(,xi).

遂以下研究函数
P ( x ) 2 : = ∥ Φ ( ⋅ , x ) − ∑ i = 1 N

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值