机器学习笔记之高斯网络——基本介绍
引言
本节将介绍高斯网络
回顾:
条件独立性
在概率图模型——背景介绍中介绍了条件独立性,条件独立性的核心思想是:给定某随机变量集合 X A \mathcal X_{\mathcal A} XA的条件下,可能存在随机变量集合 X B , X C \mathcal X_{\mathcal B},\mathcal X_{\mathcal C} XB,XC内部结点之间存在关联,但 X B , X C \mathcal X_{\mathcal B},\mathcal X_{\mathcal C} XB,XC之间不存在关联:
X B ⊥ X C ∣ X A \mathcal X_{\mathcal B} \perp \mathcal X_{\mathcal C} \mid \mathcal X_{\mathcal A} XB⊥XC∣XA
并且 X A , X B , X C \mathcal X_{\mathcal A},\mathcal X_{\mathcal B},\mathcal X_{\mathcal C} XA,XB,XC是三个不相交的特征集合。
概率图模型
在概率图模型——背景介绍中介绍了概率图模型(Probabilisitc Graphical Model,PGM)。从图的表示角度观察,它可以分为有向图和无向图两种:
-
基于有向图的概率图模型又称贝叶斯网络(Bayesian Network),也称信念网络(Belief Network)。
从条件独立性的角度观察,贝叶斯网络的条件独立性表达包含三种经典情况:- 同父结构(Common Parent),对应概率图结构表示如下:
上图结构表现的现象是:给定结点 i 1 i_1 i1的取值,结点 i 2 , i 3 i_2,i_3 i2,i3条件独立。
i 2 ⊥ i 3 ∣ i 1 i_2 \perp i_3 \mid i_1 i2⊥i3∣i1 - 顺序结构(Sequence),对应概率图结构表示如下:
上图结构表现的现象是:给定结点 i 2 i_2 i2的取值,结点 i 1 , i 3 i_1,i_3 i1,i3相互独立。
i 1 ⊥ i 3 ∣ i 2 i_1 \perp i_3 \mid i_2 i1⊥i3∣i2 - V \mathcal V V型结构(V-Structure),对应概率图结构表示如下:
该结构表现的现象是:给定 i 3 i_3 i3结点的条件下, i 1 , i 2 i_1,i_2 i1,i2必不独立;相反, i 3 i_3 i3取值未知的条件下, i 1 , i 2 i_1,i_2 i1,i2相互独立。
i 3 ∣ i 1 ⊥ i 2 i_3 \mid i_1 \perp i_2 i3∣i1⊥i2
- 同父结构(Common Parent),对应概率图结构表示如下:
-
基于无向图的概率图模型又称马尔可夫网络(Markov Network),也称马尔可夫随机场(Markov Random Field)。
相比于贝叶斯网络,马尔可夫随机场中描述变量之间的依赖关系 仅包含一种格式:
该结构表现的现象是:给定 i 1 i_1 i1结点的条件下,结点 i 2 , i 3 i_2,i_3 i