机器学习笔记之高斯网络(一)基本介绍

本文介绍了高斯网络,一种概率图模型,用于处理连续型随机变量。高斯网络包括有向的高斯贝叶斯网络和无向的高斯马尔可夫网络。条件独立性是概率图模型的核心,通过精度矩阵与条件独立性的关系,阐述了如何判断随机变量在给定条件下是否独立。文中还提及了多元高斯分布、边缘独立和条件独立的概念,以及相关系数和精度矩阵在简化计算中的作用。
摘要由CSDN通过智能技术生成

引言

本节将介绍高斯网络

回顾:

条件独立性

概率图模型——背景介绍中介绍了条件独立性,条件独立性的核心思想是:给定某随机变量集合 X A \mathcal X_{\mathcal A} XA的条件下,可能存在随机变量集合 X B , X C \mathcal X_{\mathcal B},\mathcal X_{\mathcal C} XB,XC内部结点之间存在关联,但 X B , X C \mathcal X_{\mathcal B},\mathcal X_{\mathcal C} XB,XC之间不存在关联
X B ⊥ X C ∣ X A \mathcal X_{\mathcal B} \perp \mathcal X_{\mathcal C} \mid \mathcal X_{\mathcal A} XBXCXA
并且 X A , X B , X C \mathcal X_{\mathcal A},\mathcal X_{\mathcal B},\mathcal X_{\mathcal C} XA,XB,XC是三个不相交的特征集合。

概率图模型

概率图模型——背景介绍中介绍了概率图模型(Probabilisitc Graphical Model,PGM)。从图的表示角度观察,它可以分为有向图无向图两种:

  • 基于有向图的概率图模型又称贝叶斯网络(Bayesian Network),也称信念网络(Belief Network)。
    条件独立性的角度观察,贝叶斯网络条件独立性表达包含三种经典情况:

    • 同父结构(Common Parent),对应概率图结构表示如下:
      贝叶斯网络——条件独立性——同父结构
      上图结构表现的现象是:给定结点 i 1 i_1 i1的取值,结点 i 2 , i 3 i_2,i_3 i2,i3条件独立
      i 2 ⊥ i 3 ∣ i 1 i_2 \perp i_3 \mid i_1 i2i3i1
    • 顺序结构(Sequence),对应概率图结构表示如下:
      贝叶斯网络——条件独立性——顺序结构
      上图结构表现的现象是:给定结点 i 2 i_2 i2的取值,结点 i 1 , i 3 i_1,i_3 i1,i3相互独立
      i 1 ⊥ i 3 ∣ i 2 i_1 \perp i_3 \mid i_2 i1i3i2
    • V \mathcal V V型结构(V-Structure),对应概率图结构表示如下:
      贝叶斯网络——条件独立性——V型结构
      该结构表现的现象是:给定 i 3 i_3 i3结点的条件下, i 1 , i 2 i_1,i_2 i1,i2必不独立;相反, i 3 i_3 i3取值未知的条件下, i 1 , i 2 i_1,i_2 i1,i2相互独立
      i 3 ∣ i 1 ⊥ i 2 i_3 \mid i_1 \perp i_2 i3i1i2
  • 基于无向图的概率图模型又称马尔可夫网络(Markov Network),也称马尔可夫随机场(Markov Random Field)。
    相比于贝叶斯网络马尔可夫随机场描述变量之间的依赖关系 仅包含一种格式:
    马尔可夫随机场——条件独立性
    该结构表现的现象是:给定 i 1 i_1 i1结点的条件下,结点 i 2 , i 3 i_2,i_3 i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值