GaussianNetwork高斯网络

高斯网络

高斯图模型(高斯网络)是一种随机变量为连续的有向或者无向图。有向图版本的高斯图是高斯贝叶斯网络,无向版本的叫高斯马尔可夫网络。

高斯网络的每一个节点都是高斯分布: N ( μ i , Σ i ) \mathcal{N}(\mu_i,\Sigma_i) N(μi,Σi),于是所有节点的联合分布就是一个高斯分布,均值为 μ \mu μ,方差为 Σ \Sigma Σ

对于边缘概率,我们有下面三个结论:

  1. 对于方差矩阵,可以得到独立性条件: x i ⊥ x j ⇔ σ i j = 0 x_i\perp x_j\Leftrightarrow\sigma_{ij}=0 xixjσij=0,这个叫做全局独立性。

  2. 我们看方差矩阵的逆(精度矩阵或信息矩阵): Λ = Σ − 1 = ( λ i j ) p p \Lambda=\Sigma^{-1}=(\lambda_{ij})_{pp} Λ=Σ1=(λij)pp,有定理:

    x i ⊥ x j ∣ ( X − { x i , x j } ) ⇔ λ i j = 0 x_i\perp x_j|(X-\{x_i,x_j\})\Leftrightarrow\lambda_{ij}=0 xixj(X{xi,xj})λij=0

    因此,我们使用精度矩阵来表示条件独立性。

  3. 对于任意一个无向图中的节点 x i x_i xi x i ∣ ( X − x i ) ∼ N ( ∑ j ≠ i λ i j λ i i x j , λ i i − 1 ) x_i|(X-x_i)\sim \mathcal{N}(\sum\limits_{j\ne i}\frac{\lambda_{ij}}{\lambda_{ii}}x_j,\lambda_{ii}^{-1}) xi(Xxi)N(j=iλiiλijxj,λii1)

    也就是其他所有分量的线性组合,即所有与它有链接的分量的线性组合。

高斯贝叶斯网络 GBN

高斯贝叶斯网络可以看成是 LDS 的一个推广,LDS 的假设是相邻时刻的变量之间的依赖关系,因此是一个局域模型,而高斯贝叶斯网络,每一个节点的父亲节点不一定只有一个,因此可以看成是一个全局的模型。根据有向图的因子分解:
p ( x ) = ∏ i = 1 p p ( x i ∣ x P a r e n t s ( i ) ) p(x)=\prod\limits_{i=1}^pp(x_i|x_{Parents(i)}) p(x)=i=1pp(xixParents(i))
对里面每一项,假设每一个特征是一维的,可以写成线性组合:
p ( x i ∣ x P a r e n t s ( i ) ) = N ( x i ∣ μ i + W i T x P a r e n t s ( i ) , σ i 2 ) p(x_i|x_{Parents(i)})=\mathcal{N}(x_i|\mu_i+W_i^Tx_{Parents(i)},\sigma^2_i) p(xixParents(i))=N(xiμi+WiTxParents(i),σi2)
将随机变量写成:
x i = μ i + ∑ j ∈ x P a r e n t s ( i ) w i j ( x j − μ j ) + σ i ε i , ε i ∼ N ( 0 , 1 ) x_i=\mu_i+\sum\limits_{j\in x_{Parents(i)}}w_{ij}(x_j-\mu_j)+\sigma_i\varepsilon_i,\varepsilon_i\sim \mathcal{N}(0,1) xi=μi+jxParents(i)wij(xjμj)+σiεi,εiN(0,1)
写成矩阵形式,并且对 w w w 进行扩展:
x − μ = W ( x − μ ) + S ε x-\mu=W(x-\mu)+S\varepsilon xμ=W(xμ)+Sε
其中, S = d i a g ( σ i ) S=diag(\sigma_i) S=diag(σi)。所以有: x − μ = ( I − W ) − 1 S ε x-\mu=(\mathbb{I}-W)^{-1}S\varepsilon xμ=(IW)1Sε

由于:
C o v ( x ) = C o v ( x − μ ) Cov(x)=Cov(x-\mu) Cov(x)=Cov(xμ)
可以得到协方差矩阵。

高斯马尔可夫网络 GMN

对于无向图版本的高斯网络,可以写成:
p ( x ) = 1 Z ∏ i = 1 p ϕ i ( x i ) ∏ i , j ∈ X ϕ i , j ( x i , x j ) p(x)=\frac{1}{Z}\prod\limits_{i=1}^p\phi_i(x_i)\prod\limits_{i,j\in X}\phi_{i,j}(x_i,x_j) p(x)=Z1i=1pϕi(xi)i,jXϕi,j(xi,xj)
为了将高斯分布和这个式子结合,我们写出高斯分布和变量相关的部分:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲p(x)&\propto \e…
可以看到,这个式子与无向图分解中的两个部分对应,我们记 h = Λ μ h=\Lambda\mu h=Λμ为 Potential Vector。其中和 x i x_i xi 相关的为: x i : − 1 2 λ i i x i 2 + h i x i x_i:-\frac{1}{2}\lambda_{ii}x_i^2+h_ix_i xi:21λiixi2+hixi,与 x i , x j x_i,x_j xi,xj 相关的是: x i , x j : − λ i j x i x j x_i,x_j:-\lambda_{ij}x_ix_j xi,xj:λijxixj,这里利用了精度矩阵为对称矩阵的性质。我们看到,这里也可以看出, x i , x j x_i,x_j xi,xj 构成的一个势函数,只和 λ i j \lambda_{ij} λij 有关,于是 $x_i\perp x_j|(X-{x_i,x_j})\Leftrightarrow\lambda_{ij}=0 $。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值