机器学习笔记之谱聚类(一)k-Means聚类算法介绍

文章介绍了k-Means聚类算法,包括其与高斯混合模型的关系、算法流程、距离计算方法,并讨论了算法的缺陷。k-Means是一种非概率模型,用于无监督学习中的数据分组,通过迭代优化样本到簇中心的距离来划分数据。然而,k-Means需要预设簇的数量,且对数据分布有特定要求,不适用于连通性簇分布的情况。
摘要由CSDN通过智能技术生成

引言

从本节开始,将介绍聚类任务,本节将介绍 k-Means \text{k-Means} k-Means算法。

回顾:高斯混合模型

高斯混合模型( Gaussian Mixture Model,GMM \text{Gaussian Mixture Model,GMM} Gaussian Mixture Model,GMM)是一种处理聚类任务的常用模型。作为一种概率生成模型,它的概率图结构可表示为如下形式:
高斯混合模型——概率图结构
其中隐变量 Z \mathcal Z Z是一个离散型随机变量,对应随机变量 X \mathcal X X后验结果服从高斯分布:
Z ∼ Categorical Distribution ( 1 , 2 , ⋯   , K ) X ∣ Z ∼ N ( μ k , Σ k ) k ∈ { 1 , 2 , ⋯   , K } \begin{aligned} \mathcal Z & \sim \text{Categorical Distribution}(1,2,\cdots,\mathcal K) \\ \mathcal X & \mid \mathcal Z \sim \mathcal N(\mu_{k},\Sigma_{k}) \quad k \in \{1,2,\cdots,\mathcal K\} \end{aligned} ZXCategorical Distribution(1,2,,K)ZN(μk,Σk)k{ 1,2,,K}
从生成模型的角度,高斯混合模型对 P ( X , Z ) \mathcal P(\mathcal X,\mathcal Z) P(X,Z)进行建模。关于 X \mathcal X X概率密度函数 P ( X ) \mathcal P(\mathcal X) P(X)可表示为如下形式:
其中 P Z k \mathcal P_{\mathcal Z_k} PZk表示隐变量 Z \mathcal Z Z选择离散结果 k k k时的概率结果; μ Z k , Σ Z k \mu_{\mathcal Z_k},\Sigma_{\mathcal Z_k} μZk,ΣZk表示对应 X ∣ Z k \mathcal X \mid \mathcal Z_k XZk高斯分布的均值和协方差信息。
P ( X ) = ∑ Z P ( X , Z ) = ∑ Z P ( Z ) ⋅ P ( X ∣ Z ) = ∑ k = 1 K P Z k ⋅ N ( μ Z k , Σ Z k ) \begin{aligned} \mathcal P(\mathcal X) & = \sum_{\mathcal Z} \mathcal P(\mathcal X,\mathcal Z) \\ & = \sum_{\mathcal Z} \mathcal P(\mathcal Z) \cdot \mathcal P(\mathcal X \mid \mathcal Z) \\ & = \sum_{k=1}^{\mathcal K}\mathcal P_{\mathcal Z_k} \cdot \mathcal N(\mu_{\mathcal Z_k},\Sigma_{\mathcal Z_k}) \end{aligned} P(X)=ZP(X,Z)=ZP(Z)P(XZ)=k=1KPZkN(μZk,ΣZk)

聚类任务基本介绍

生成模型综述——监督学习与无监督学习中简单介绍过,聚类( Clustering \text{Clustering} Clustering)任务属于无监督学习( Unsupervised Learning \text{Unsupervised Learning} Unsupervised Learning)任务。无监督学习任务的特点是:样本标签是未知的。而无监督学习的目标是通过学习无标签的样本来揭示数据的内在性质及规律

而聚类试图将数据集内的样本划分为若干个子集,每个子集称为一个( Cluster \text{Cluster} Cluster)。从概率/非概率模型的角度划分,概率模型的典型模型是高斯混合模型;而非概率的聚类模型,其主要代表是 k k k均值算法( k-Means \text{k-Means} k-Means)

距离计算

在介绍 k-Means \text{k-Means} k-Means算法之前,需要介绍聚类的有效性指标( Vaildity Index \text{Vaildity Index} Vaildity Index)。从直观上描述,在聚类的过程我们更希望物以类聚——相同的样本尽可能地彼此相似,不同簇的样本尽可能地不同。

对于两个样本点,通常使用计算它们在样本空间中的距离 来描述两样本之间的相似性程度。样本之间距离越小,样本之间的相似性程度越高,反之同理。

已知两个样本 x ( i ) , x ( j ) x^{(i)},x^{(j)} x(i),x(j)表示如下:
它们均属于 p p p维特征空间,即 x ( i ) , x ( j ) ∈ R p x^{(i)},x^{(j)} \in \mathbb R^p x(i),x(j)Rp.
{ x ( i ) = ( x 1 ( i ) , x 2 ( i ) , ⋯   , x p ( i ) ) T x ( j ) = ( x 1 ( j ) , x 2 ( j ) , ⋯   , x p ( j ) ) T \begin{cases} x^{(i)} = \left(x_1^{(i)},x_2^{(i)},\cdots,x_p^{(i)}\right)^T \\ x^{(j)} = \left(x_1^{(j)},x_2^{(j)},\cdots,x_p^{(j)}\right)^T \end{cases} x(i)=(x1(i),x2(i),,xp(i))Tx(j)=(x1(j),x2(j),,xp(j))T
关于描述样本 x ( i ) , x (

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值