机器学习笔记之生成模型综述(一)生成模型介绍

机器学习笔记之生成模型综述——生成模型介绍

引言

从本节开始,将介绍生成模型的相关概念。

生成模型介绍

生成模型,单从名字角度,可以将其认识为:生成样本的模型。从流程的角度,它可以理解为:

  • 给定一个数据集合,基于该数据集合进行建模,并通过数据集合学习出模型的参数信息;
  • 根据已学习出的参数信息,使用模型构建出新的数据

但生成新的数据仅是生成模型的一个任务/目标,通过生成新数据的模型对生成模型进行判别可能是很片面的。

例如之前介绍的高斯混合模型( Gaussain Mixture Model,GMM \text{Gaussain Mixture Model,GMM} Gaussain Mixture Model,GMM),它的概率图结构可表示为:
高斯混合模型——概率图结构
其中 Z \mathcal Z Z是一个一维、离散型随机变量,对应的 X ∣ Z \mathcal X \mid \mathcal Z XZ服从高斯分布:
Z ∼ Discrete Distribution ( 1 , 2 , ⋯   , K ) X ∣ Z ∼ N ( μ k , Σ k ) k ∈ { 1 , 2 , ⋯   , K } \begin{aligned} \mathcal Z & \sim \text{Discrete Distribution}(1,2,\cdots,\mathcal K) \\ \mathcal X \mid \mathcal Z & \sim \mathcal N(\mu_{k},\Sigma_k) \quad k \in \{1,2,\cdots,\mathcal K\} \end{aligned} ZXZDiscrete Distribution(1,2,,K)N(μk,Σk)k{ 1,2,,K}
只要能够确定隐变量 Z \mathcal Z Z的概率分布 P Z \mathcal P_{\mathcal Z} PZ,以及高斯分布参数 ( μ Z , Σ Z ) (\mu_{\mathcal Z},\Sigma_{\mathcal Z}) (μZ,ΣZ),就可以从概率模型中源源不断生成出样本:
这里 μ Z , Σ Z , P Z \mu_{\mathcal Z},\Sigma_{\mathcal Z},\mathcal P_{\mathcal Z} μZ,ΣZ,PZ均表示模型参数。
{ ∀ z ( i ) ∈ Z z ( i ) ∼ P z ( i ) x ( i ) ∣ z ( i ) ∼ N ( μ z ( i ) , Σ z ( i ) ) \begin{cases} \forall z^{(i)} \in \mathcal Z \\ z^{(i)} \sim \mathcal P_{z^{(i)}}\\ x^{(i)} \mid z^{(i)} \sim \mathcal N(\mu_{z^{(i)}},\Sigma_{z^{(i)}}) \end{cases} z(i)Zz(i)Pz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值