机器学习笔记之优化算法(三)线搜索方法(步长角度;精确搜索)

文章探讨了机器学习优化中的线搜索方法,从步长角度分析了迭代过程。它假设目标函数随着迭代次数增加而收敛,并且每次迭代后的函数值单调减少。下降方向和最速下降方向被用来确保函数值下降,其中最速下降方向对应于梯度的反方向。文章还讨论了步长选取的重要性,指出过大或过小的步长都可能导致问题,提出了精确搜索方法来寻找最优步长,即通过求解一次函数的最小值。然而,实际中由于目标函数的复杂性,精确搜索可能代价高昂,暗示后续会讨论非精确搜索策略。
摘要由CSDN通过智能技术生成

引言

上一节介绍了从方向角度认识线搜索方法,本节继续介绍:从步长角度认识线搜索方法。

回顾:线搜索方法——方向角度

关于线搜索方法的迭代过程表示如下:
x k + 1 = x k + α k ⋅ P k x_{k+1} = x_k + \alpha_k \cdot \mathcal P_k xk+1=xk+αkPk

关于收敛性的假设

关于目标函数 f ( X ) f(\mathcal X) f(X),我们通过求解一系列数值解 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} { xk}k=0的方式使得:

  • 随着迭代次数 k k k的增加,对应的 f ( x k ) f(x_k) f(xk)能够有效地收敛,最终得到目标函数的最小值 min ⁡ X ∈ R n f ( X ) \begin{aligned}\mathop{\min}\limits_{\mathcal X \in \mathbb R^{n}} f(\mathcal X)\end{aligned} XRnminf(X),从而得到数值解的最优值 x ∗ x^* x
    x ∗ = arg ⁡ min ⁡ X ∈ R n f ( X ) x^* = \mathop{\arg\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) x=XRnargminf(X)

关于单调性的假设

为了简化逻辑,我们仅讨论各迭代步骤的数值解 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} { xk}k=0对应的目标函数结果 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} { f(xk)}k=0服从严格的单调性。即:
其中 N N N表示非负整数。
∀ k ∈ N ⇒ f ( x k + 1 ) < f ( x k ) \forall k \in N \Rightarrow f(x_{k+1}) < f(x_k) kNf(xk+1)<f(xk)

下降方向与最速方向

基于上一节的相关假设,我们可以得到如下结论:
f ( x k + 1 ) − f ( x k ) ≈ [ ∇ f ( x k ) ] T ⋅ P k < 0 f(x_{k+1}) - f(x_k) \approx \left[\nabla f(x_k)\right]^T \cdot \mathcal P_k < 0 f(xk+1)f(xk)[f(xk)]TPk<0
将上式继续展开:
∣ ∣ ∇ f ( x k ) ∣ ∣ ⋅ ∣ ∣ P k ∣ ∣ cos ⁡ θ < 0 ||\nabla f(x_k)|| \cdot ||\mathcal P_k|| \cos \theta < 0 ∣∣∇f(xk)∣∣∣∣Pk∣∣cosθ<0
从上式可以看出:

  • ∣ ∣ ∇ f ( x k ) ∣ ∣ ||\nabla f(x_k)||

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值