hbase的rowkey设计原则

标签: hbase
25人阅读 评论(0) 收藏 举报
分类:

HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。
HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有两种方式:
1、通过get方式,指定rowkey获取唯一一条记录
2、通过scan方式,设置startRow和stopRow参数进行范围匹配
3、全表扫描,即直接扫描整张表中所有行记录
rowkey长度原则:
rowkey是一个二进制码流,可以是任意字符串,最大长度64kb,实际应用中一般为10-100bytes,以byte[]形式保存,一般设计成定长。建议越短越好,不要超过16个字节,原因如下:
数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。

rowkey散列原则:
如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。

rowkey唯一原则:
必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。

什么是热点:
HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。设计良好的数据访问模式以使集群被充分,均衡的利用。
为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。

下面是一些常见的避免热点的方法以及它们的优缺点:
加盐
这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。
哈希
哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据
反转
第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。

反转rowkey的例子
以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题
时间戳反转
一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用Long.Max_Value - timestamp追加到key的末尾,例如[key][reverse_timestamp],[key]的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。
比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计
[userId反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转][000000000000],stopRow是[userId反转][Long.Max_Value - timestamp]
如果需要查询某段时间的操作记录,startRow是[user反转][Long.Max_Value - 起始时间],stopRow是[userId反转][Long.Max_Value - 结束时间]

查看评论

Hbase rowkey 设计原则

HBase是三维有序存储的,三维指的是:RowKey(行健)、column key(columnFamily和qualifier)、TimeStamp(时间戳),通过这三个维度我们可以对HBase中的...
  • bitcarmanlee
  • bitcarmanlee
  • 2016-05-24 09:49:12
  • 4504

HBase的RowKey设计原则

HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定...
  • liuguangfudan
  • liuguangfudan
  • 2016-06-20 17:44:46
  • 812

HBase学习之HBase的RowKey设计原则

HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定...
  • ljp812184246
  • ljp812184246
  • 2016-09-13 15:17:53
  • 7113

HBase RowKey的设计原则

HBase是三维有序存储的,三维指的是:RowKey(行健)、column key(columnFamily和qualifier)、TimeStamp(时间戳),通过这三个维度我们可以对HBase中的...
  • lzm1340458776
  • lzm1340458776
  • 2015-04-08 15:48:21
  • 11370

HBase RowKey设计原则

本文引自淘宝技术部文章:http://rdc.taobao.org/?p=457 建议使用String如果不是特殊要求,RowKey最好都是String。 方便线上使用Shell查数据、排查错...
  • ajax_jquery
  • ajax_jquery
  • 2014-04-02 10:17:29
  • 1985

HBase学习之五:HBase的RowKey设计原则

HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定...
  • javajxz008
  • javajxz008
  • 2016-07-12 22:05:21
  • 20115

HBase(2.6)-HBase的RowKey设计原则 ,热点问题

1 概述 Hbase是一个分布式的、面向列的数据库,它和一般关系型数据库的最大区别是:hbase很适合于存储非结构化的数据,还有就是它基于列的而不是基于行的模式。 既然HBase是采用KeyVal...
  • yyl424525
  • yyl424525
  • 2017-08-23 14:51:32
  • 300

HBase rowkey设计原则

Hbase是三维有序存储的,通过rowkey、column key(column family和qualifier)、timestamp这三个维度可以对数据进行快速定位。 1、通过get方式,指定ro...
  • HoldonWithYourGoal
  • HoldonWithYourGoal
  • 2017-11-09 20:58:53
  • 112

HBase 行键rowkey设计原则

1.行键应该尽可能短行键存在于HBase中的每一个单元格中。如果行键越长,用于存储单元格的I/O开销就会越大。通常我们采用MD5加密的定长键来代替行键2.对于组合行键 排序顺序应该取决于访问模式如果是...
  • Thousa_Ho
  • Thousa_Ho
  • 2017-12-27 17:17:42
  • 284

HBase分页查询的rowkey设计技巧

  • 2013年09月20日 20:33
  • 33KB
  • 下载
    个人资料
    等级:
    访问量: 342
    积分: 252
    排名: 31万+
    文章存档