论文阅读:【Joint AU localisation and intensity estimation through heatmap regression】

论文阅读:【Joint AU localisation and intensity estimation through heatmap regression】

The approach aims to learn a pixel-wise regression function returning a score per AU, which indicates an AU intensity at a given spatial location.

Heatmap regression then generates an image, or channel, per AU. The amplitude and size of the Gaussian is determined by the intensity of the AU.

在这里插入图片描述

The Hourglass is made of residual blocks, downsampling the image to a low resolution and then upsampling to restore the image resolution, using skip connections to aggregate information at different scales.

The inference consists of simply performing the max operator on each of the heatmaps.

  • both the localisation and the intensity estimation are encoded in the representation of the heatmaps.
  • label augmentation: compensates the lack of annotated data, and increases the robustness of the models against appearance variations.
  • treat the problem as a regression problem in the continuous range within 0 and 5.

Heatmap generation:

For a given AU a, each heatmap contains two or three Gaussians at each of its K selected centers ( c x , c y ) (c_x,c_y) (cx,cy).
The heatmap for Action Unit a is finally given as H a ( i , j ) = max ⁡ k G k ( i , j ) H_a(i,j)=\max_k G_k(i,j) Ha(i,j)=maxkGk(i,j).
G k ( i + c x , j + c y ) = { I a e − ( i 2 + j 2 ) 2 σ 2 , i f ∣ ∣ i ∣ ∣ , ∣ ∣ j ∣ ∣ ≤ 6 I a ; ∣ ∣ i ∣ ∣ , ∣ ∣ j ∣ ∣ ∈ i m a g e b o u n d s 0 , o t h e r w i s e G_k(i+c_x,j+c_y)=\left\{ \begin{aligned} I_ae^{-\frac{(i^2+j^2)}{2\sigma^2}}, && if ||i||,||j||\leq6I_a;||i||,||j||\in image bounds \\ 0, && otherwise \\ \end{aligned} \right. Gk(i+cx,j+cy)=Iae2σ2(i2+j2),0,ifi,j6Ia;i,jimageboundsotherwise,
// G k G_k Gk: a 64×64 image;
// I a I_a Ia: labeled intensity.

Data augmentation:

  • Input augmentation (Landmark perturbation):
    perturb the landmarks using a small noise, then register the images according to the eye and mouth positions.
    // augments the training data to account for errors in the landmark localisation process, and implies a random rigid transformation.
  • Label perturbation: I k ← 0.2 I k ∣ z ∣ , z ∼ N ( 0 , 1 ) I_k\gets 0.2I_k|z|,z\sim N(0,1) Ik0.2Ikz,zN(0,1),
    // I k I_k Ik: the intensity of the k-th AU.
    // only affects the heatmap generation, not the loss function during the backpropagation process.
  • Color perturbation:
    consists of applying a random perturbation to the RGB channels to prevent overfitting.

Loss function:

In heatmap regression, the loss is a per-pixel function between the predicted and the target heatmaps.
Use the smooth L1 norm (i.e., the Huber loss).
The total loss is computed as the average of the per-pixel loss per AU.
L i , j = { 0.5 ( x i , j − y i , j ) 2 , i f ∣ x i , j − y i , j ∣ < 1 ∣ x i , j − y i , j ∣ − 0.5 , o t h e r w i s e L_{i,j}=\left\{ \begin{aligned} 0.5(x_{i,j}-y_{i,j})^2, && if |x_{i,j}-y_{i,j}|<1 \\ |x_{i,j}-y_{i,j}|-0.5, && otherwise \\ \end{aligned} \right. Li,j={0.5(xi,jyi,j)2,xi,jyi,j0.5,ifxi,jyi,j<1otherwise
// x i , j x_{i,j} xi,j: the output generated by the network at pixel (i, j);
// y i , j y_{i,j} yi,j: the corresponding ground-truth.

smooth L1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值