Adversarial Stain Transfer for Histopathology Image Analysis(简介)

组织病理学分析中的对抗染色迁移

      本文所提出方法的目标是为给定的组织病理学图像分析任务(例如,分类或分割)建立一个带有内在染色归一化组件的判别模型。这种模型应该能够处理具有不同统计特性的图像(即,不同染色表现),不需要额外的训练或预处理。

      染色也可以看作是分割任务。

一、该论文中提出的网络结构:

 

        x^A:用于训练的图片,来自病理学实验室A。

        y^Ax^A对应的注释,如,类别标签或分割掩码。

        \{x^B\}:测试图片的集合,与A有相同的组织类型,由于获取过程不同(如,染色剂不同或扫描用的显微镜不同)所以染色表现不同,来自病理学实验室B。

 

生成网络G(x^B;\Theta _G)

      又称染色迁移网络,采用了encode-decode结构和残差连接(在块与块之间用灰色虚线标出)。

      通过学习生成与训练图片\{x^A\}在染色表现方面相似的图片\{\hat{x}^B\},且与测试图片\{x^B\}要在内容上相似。

判别网络C(x;\Theta _C)

      又称特定任务网络,采用了AlexNet结构,同时进行判别和分类。该网络根据从训练集分布中提取的图像以及生成的与测试集类似(就染色而言)的图像进行训练。

      判别→估计输入图像来自训练集的概率P_1(x)而不是来自生成网络的概率P_0(x)

      分类→在给定真实图片\{x^A\}和生成图片\{\hat{x}^B\}时,预测一个特定任务标签\{\hat{y}^A\}

 

二、该论文中提到的Loss:

总loss:

             \underset{\Theta _G,\Theta _C}{min}\ \underset{\Theta _C}{max} \ \alpha L_{adv}(C,G)+\beta L_{r}(G) +\gamma L_{C}(G,C)

1.  对抗损失 L_{adv}

        L_{adv}(C,G) = E_{x\sim {x^A}}[ log C(x;\Theta _C)]\ +\ E_{x\sim {x^B}}[log(1-C(G(x;\Theta _G);\Theta _C))]

2.  正则化损失 L_{r}

        L_{r}(G) = E_{x\sim {x^B}}\left \| W\circ x \ -\ W\circ G(x;\Theta _G) \right \|_2

                W:输入图片 \{x^B\} 的颜色梯度向量域,用于捕捉图片 x^B 的边界,

                  \circ:Hadamard 积

        该 Loss 实际上是加权的L2损失。与 W 做乘积重在惩罚生成图片和输入图片在边界位置上的不同。

        此外,所使用带有跳跃层的encoder-decoder架构可使不同层次上的信息从编码器流向解码器,从而保留了一些与纹理相关的低层信息(如,边界)。

3.  类别损失 L_{c}

      L_{c}(G,C)=E_{x,y\sim \{\hat{x}^B,\hat{y}^B\}}[log C_y(G(x;\Theta _G);\Theta _C)]\ +\ E_{x,y\sim \{x^A,y^A\}}[log C_y(x;\Theta _C)]

      第一个期望对应于生成图片的类别损失,\hat{y}^B为生成图片的预测类别。

      第二个期望表示训练图片的类别损失。

 

算法的伪代码如下:

      算法 1 总结了所提方法的训练过程。

      在每轮训练中,先计算 L_{adv} 对于\Theta_C的梯度,并更新参数(梯度上升);然后计算 L_{C} 对于\Theta_C的梯度,并更新参数(最小化L_{C});最后更新\Theta_G,计算L_{adv}+L_r,进行梯度下降。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值