16-逻辑回归

逻辑回归用于解决二分类问题,它能输出概率值。通过sigmoid函数将线性回归的输入转化为0-1区间,以进行分类。损失函数采用对数似然损失,可能有多个局部最小值,可通过多次初始化和调整学习率缓解。逻辑回归常用于预测概率,如癌症诊断。
摘要由CSDN通过智能技术生成

逻辑回归

应用场景:二分类问题。逻辑回归也能得出概率值

逻辑回归为什么叫逻辑回归:因为是二分类,结果非此即彼,与逻辑运算类似

线性回归的式子作为逻辑回归的输入
在这里插入图片描述
所以线性回归的问题,逻辑回归也会出现

如何将线性回归的输入转换为一个分类问题的

sigmoid函数

在这里插入图片描述

特点:最后的输出值在0-1之间,当x=0时,y=0.5。0-1与概率是可以相对应的

sigmoid公式
在这里插入图片描述
输出:[0,1]区间的概率值,默认0.5作为阀值,大于0.5的可以分为1,小于0.5的可以分为0

注:g(z)为sigmoid函数。z就是线性回归的输入,即θ的转置与x的乘积

逻辑回归的损失函数

与线性回归原理相同,但由于是分类问题,损失函数不一样,只能通过梯度下降来求解。逻辑回归的损失函数称对数似然损失
在这里插入图片描述
当y=1时,损失函数(判断属于1的概率):
在这里插入图片描述当y=0时,损失函数:
在这里插入图片描述

在完整的损失函数中,其公式和信息熵比较像

用案例理解逻辑回归的损失函数:

"""
假设对4个样本进行分类:【样本1, 样本2, 样本3, 样本4】
实际的结果为:【1 0 0 1】
但是分类的概率为:【0.6, 0.1, 0.51, 0.7】,阀值为0.5
所以分类结果为:【1 0 1 1】
四个损失相加:1log(0.6) + 0log(0.1) + 0log(0.51) + 1log(0.7)   #可以将其理解为信息熵的大小(信息熵的大小越小越好,越小,不确定性越小)
"""

**逻辑回归中要做的还是还是更新权重**

损失函数出现多个极小值

至今学习的损失函数中,主要有均方误差和对数似然损失函数两种。
在均方误差中,损失函数不会出现多个极小值(局部最低点)的情况

而在对数似然损失函数中:如图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值