逻辑回归
应用场景:二分类问题。逻辑回归也能得出概率值
逻辑回归为什么叫逻辑回归:因为是二分类,结果非此即彼,与逻辑运算类似
线性回归的式子作为逻辑回归的输入
所以线性回归的问题,逻辑回归也会出现
如何将线性回归的输入转换为一个分类问题的
sigmoid函数
特点:最后的输出值在0-1之间,当x=0时,y=0.5。0-1与概率是可以相对应的
sigmoid公式
输出:[0,1]区间的概率值,默认0.5作为阀值,大于0.5的可以分为1,小于0.5的可以分为0
注:g(z)为sigmoid函数。z就是线性回归的输入,即θ的转置与x的乘积
逻辑回归的损失函数
与线性回归原理相同,但由于是分类问题,损失函数不一样,只能通过梯度下降来求解。逻辑回归的损失函数称对数似然损失
当y=1时,损失函数(判断属于1的概率):
当y=0时,损失函数:
在完整的损失函数中,其公式和信息熵比较像
用案例理解逻辑回归的损失函数:
"""
假设对4个样本进行分类:【样本1, 样本2, 样本3, 样本4】
实际的结果为:【1 0 0 1】
但是分类的概率为:【0.6, 0.1, 0.51, 0.7】,阀值为0.5
所以分类结果为:【1 0 1 1】
四个损失相加:1log(0.6) + 0log(0.1) + 0log(0.51) + 1log(0.7) #可以将其理解为信息熵的大小(信息熵的大小越小越好,越小,不确定性越小)
"""
**逻辑回归中要做的还是还是更新权重**
损失函数出现多个极小值
至今学习的损失函数中,主要有均方误差和对数似然损失函数两种。
在均方误差中,损失函数不会出现多个极小值(局部最低点)的情况
而在对数似然损失函数中:如图