一、基于逻辑回归的分类预测-学习笔记

一、学习目标

  • 了解逻辑回归的理论
  • 掌握逻辑回归的sklearn函数的调用使用并将其运用到鸢尾花数据集预测

二、代码实践

1.代码流程

  • demo实践
    1.库函数导入
    2.模型训练
    3.模型参数查看
    4.数据和模型可视化
    5.模型预测

  • 基于鸢尾花(iris)数据集的逻辑回归分类实践
    1.库函数导入
    2.数据读取/载入
    3.数据信息查看
    4.可视化描述
    5.利用数据回归模型在二分类上进行训练和预测
    6.利用数据回归模型在三分类(多分类)上进行训练和预测

2.demo实践

  1. 库函数导入
#导入基础库函数
import numpy as np
#numpy是Python进行科学计算的基础软件包

#导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
#matplotlib和seaborn是画图软件包

#导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

  1. 训练模型
#Demo演示LogisticRegression分类

#构造数据集
x_fearures=np.array([[-1,-2],[-2,-1],[-3,-2],[1,3],[2,1],[3,2]])
y_label=np.array([0,0,0,1,1,1])

#调用逻辑回归模型
lr_clf=LogisticRegression()

#逻辑回归模型拟合构造的数据集
lr_clf=lr_clf.fit(x_fearures,y_label)
#拟合方程为:y=w0+w1*x1+w2*x2

  1. 模型参数查看
#查看其对应模型的w
print("the weight of Logistic Regression:",lr_clf.coef_)
#查看其对应模型的w0
print("the intercept(w0) of Logistic regression:",lr_clf.intercept_)
#the weight of Logistic Regression: [[ 0.73462087  0.6947908 ]]
#the intercept(w0) of Logistic regression: [-0.03643213]

  1. 数据和模型可视化
#可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')
plt.show()

在这里插入图片描述

#可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')

nx,ny=200,100
x_min,x_max=plt.xlim()
y_min,y_max=plt.ylim()
x_grid,y_grid=np.meshgrid(np.linspace(x_min,x_max,nx),np.linspace(y_min,y_max,ny))

z_proba=lr_clf.predict_proba(np.c_[x_grid.ravel(),y_grid.ravel()])
z_proba=z_proba[:,1].reshape(x_grid.shape)
plt.contour(x_grid,y_grid,z_proba,[0.5],linewidths=2.,colors='blue')

plt.show()

在这里插入图片描述

#可视化预测新样本

plt.figure()
#new point 1
x_fearures_new1=np.array([[0,-1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1],s=50,cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

#new point 2
x_fearures_new2=np.array([[1,2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1],s=50,cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

#训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1],c=y_label,s=50,cmap='viridis')
plt.title('Dataset')

#可视化决策边界
plt.contour(x_grid,y_grid,z_proba,[0.5],linewidths=2.,colors='blue')

plt.show()

在这里插入图片描述

  1. 模型预测
#在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict=lr_clf.predict(x_fearures_new1)
y_label_new2_predict=lr_clf.predict(x_fearures_new2)
print('the new point 1 predict:\n',y_label_new1_predict)
print('the new point 2 predict:\n',y_label_new2_predict)
#由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=(1|x),\theta)),所以我们可以利用predict_proba函数预测其概率
y_label_new1_predict_proba=lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba=lr_clf.predict_proba(x_fearures_new2)
print('the new point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('the new point2 predicr Probability of each class:\n',y_label_new2_predict_proba)

#the new point 1 predict:
 #[0]
#the new point 2 predict:
 #[1]
#the new point 1 predict Probability of each class:
 #[[ 0.67507358  0.32492642]]
#the new point2 predicr Probability of each class:
 #[[ 0.11029117  0.88970883]]

可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),将X_new2预测为了类别1(判别面的右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中的蓝色线。

3.基于鸢尾花(iris)数据集的逻辑回归代码实践

本次我们选择鸢尾花数据集(iris)进行方法的尝试训练,该数据集一共包含5个变量(4个特征变量,1个目标分类变量),共150个样本。目标变量为“花的类别”,都属于鸢尾属下的三个亚属,分别是:山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。三种鸢尾花的4个特征是:花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去用来识别物种。

变量描述
sepal legth花萼长度(cm)
sepal width花萼宽度(cm)
petal legth花瓣长度(cm)
petal width花瓣宽度(cm)
target鸢尾花的三个亚属类别:setosa(0)、versicolor(1)、virginica(2)
  1. 库函数的导入
#导入基础函数库
import numpy as np
import pandas as pd
#pandas是一种快速、强大、灵活且易于使用的开源数据分析和处理工具

#导入绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns

  1. 数据读取/载入
#利用sklearn中自带的iris数据作为数据载入,并利用pandas转换为DataFrame格式
from sklearn.datasets import load_iris
data=load_iris() #得到数据特征
iris_target=data.target #得到数据对应的标签
iris_features=pd.DataFrame(data=data.data,columns=data.feature_names) #利用pandas转换成DataFrame格式

  1. 数据信息简单查看
#利用.info查看数据的整体信息
iris_features.info()

'''
结果如下:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm)    150 non-null float64
sepal width (cm)     150 non-null float64
petal length (cm)    150 non-null float64
petal width (cm)     150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
'''
#如果进行简单的数据查看,我们可以利用:.head()和.tail()

#查看头部
iris_features.head()

结果如下:

pepal lengthsepal widthpetal lengthpetal width
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
#查看尾部
iris_features.tail()

结果如下:

pepal lengthsepal widthpetal lengthpetal width
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8
#查看对应的类别标签
iris_target


'''
结果如下:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
'''
#其中,0,1,2分别代表‘setosa’、‘versicolor’、‘virginica’三种鸢尾花的类别
#利用value_counts函数查看类别数量
pd.Series(iris_target).value_counts()

'''
结果如下:
2    50
1    50
0    50
dtype: int64
'''
#对特征进行一些统计描述
iris_features.describe()

结果如下:

sepal length (cm)sepal width (cm)petal length (cm)petal width (cm)
count150.000000150.000000150.000000150.000000
mean5.8433333.0540003.7586671.198667
std0.8280660.4335941.7644200.763161
min4.3000002.0000001.0000000.100000
25%5.1000002.8000001.6000000.300000
50%5.8000003.0000004.3500001.300000
75%6.4000003.3000005.1000001.800000
max7.9000004.4000006.9000002.500000

从统计描述中,我们可以看到不同数值特征的变化范围。

  1. 可视化描述
#合并标签和特征信息
iris_all=iris_features.copy()#进行浅拷贝,防止对原始数据的修改
iris_all['target']=iris_target
#特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist',hue='target')
plt.show()

在这里插入图片描述
从上图可以发现,在2D情况下,不同的的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

for col in iris_features.columns:
    sns.boxplot(x='target',y=col,saturation=0.5,palette='pastel',data=iris_all)
    plt.title(col)
    plt.show()
  

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
利用箱型图也可以得到不同类别的花在不同特征上的分布差异情况。

#选取前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig=plt.figure(figsize=(10,8))
ax=fig.add_subplot(111,projection='3d')

iris_all_class0=iris_all[iris_all['target']==0].values
iris_all_class1=iris_all[iris_all['target']==1].values
iris_all_class2=iris_all[iris_all['target']==2].values
#'setosa'(0),'versicolor'(1),'virginica'(2)
ax.scatter(iris_all_class0[:,0],iris_all_class0[:,1],iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0],iris_all_class1[:,1],iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0],iris_all_class2[:,1],iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

在这里插入图片描述

  1. 利用逻辑回归模型在二分类上进行训练和预测‘
#为了正确评估模型性能,将数据划分为训练集合测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
#选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]
#测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part,iris_target_part,test_size=0.2,random_state=2020)
#从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
#定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')
#在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)

'''
结果如下:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,
          verbose=0, warm_start=False)
'''
#查看其对用的w
print('the weight of Logistic Regression:',clf.coef_)

#查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)

'''
结果如下:
the weight of Logistic Regression: [[ 0.45244919 -0.81010583  2.14700385  0.90450733]]
the intercept(w0) of Logistic Regression: [-6.57504448]
'''
#在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
from sklearn import metrics
#利用accuracy(准确度)预测正确的样本数目占总预测样本数目的比例评估模型的准确性
print('The accuracy of the Logistic Regression is',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

#查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

#利用热力图对结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Turelabels')
plt.show()

'''
结果如下:
The accuracy of the Logistic Regression is 1.0
The accuracy of the Logistic Regression is: 1.0
The confusion matrix result:
 [[ 9  0]
 [ 0 11]]
'''

在这里插入图片描述
我们可以发现其准确度为1,代表所有样本都预测正确了。

  1. 利用逻辑回归模型在三分类(多分类)’上进行训练和预测
#测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)
#定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')
#在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)

'''
结果如下:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=0, solver='lbfgs', tol=0.0001,
          verbose=0, warm_start=False)
'''
#查看其对用w
print('The weight of Logistic Regression:\n',clf.coef_)
#查看其对应的w0
print('The intercept(w0) of Logistic Regression:\n',clf.intercept_)
#由于这个是三分类,所以我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类

'''
结果如下:
The weight of Logistic Regression:
 [[-0.43538857  0.87888013 -2.19176678 -0.94642091]
 [-0.39434234 -2.6460985   0.76204684 -1.35386989]
 [-0.00806312  0.11304846  2.52974343  2.3509289 ]]
The intercept(w0) of Logistic Regression:
 [  6.30620875   8.25761672 -16.63629247]
'''
#在训练集和测试集分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)

#由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所以我们可以利用predict_proba函数预测其概率)
train_predict_proba=clf.predict_proba(x_train)
test_predict_proba=clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
#其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率

#利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

'''
结果如下:
The test predict Probability of each class:
 [[  1.32525870e-04   2.41745142e-01   7.58122332e-01]
 [  7.02970475e-01   2.97026349e-01   3.17667822e-06]
 [  3.37367886e-02   7.25313901e-01   2.40949311e-01]
 [  5.66207138e-03   6.53245545e-01   3.41092383e-01]
 [  1.06817066e-02   6.72928600e-01   3.16389693e-01]
 [  8.98402870e-04   6.64470713e-01   3.34630884e-01]
 [  4.06382037e-04   3.86192249e-01   6.13401369e-01]
 [  1.26979439e-01   8.69440588e-01   3.57997319e-03]
 [  8.75544317e-01   1.24437252e-01   1.84312617e-05]
 [  9.11209514e-01   8.87814689e-02   9.01671605e-06]
 [  3.86067682e-04   3.06912689e-01   6.92701243e-01]
 [  6.23261939e-03   7.19220636e-01   2.74546745e-01]
 [  8.90760124e-01   1.09235653e-01   4.22292409e-06]
 [  2.32339490e-03   4.47236837e-01   5.50439768e-01]
 [  8.59945211e-04   4.22804376e-01   5.76335679e-01]
 [  9.24814068e-01   7.51814638e-02   4.46852786e-06]
 [  2.01307999e-02   9.35166320e-01   4.47028801e-02]
 [  1.71215635e-02   5.07246971e-01   4.75631465e-01]
 [  1.83964097e-04   3.17849048e-01   6.81966988e-01]
 [  5.69461042e-01   4.30536566e-01   2.39269631e-06]
 [  8.26025475e-01   1.73971556e-01   2.96936737e-06]
 [  3.05327704e-04   5.15880492e-01   4.83814180e-01]
 [  4.69978972e-03   2.90561777e-01   7.04738434e-01]
 [  8.61077168e-01   1.38915993e-01   6.83858427e-06]
 [  6.99887637e-04   2.48614010e-01   7.50686102e-01]
 [  5.33421842e-02   8.31557126e-01   1.15100690e-01]
 [  2.34973018e-02   3.54915328e-01   6.21587370e-01]
 [  1.63311193e-03   3.48301765e-01   6.50065123e-01]
 [  7.72156866e-01   2.27838662e-01   4.47157219e-06]
 [  9.30816593e-01   6.91640361e-02   1.93708074e-05]]
The accuracy of the Logistic Regression is: 0.958333333333
The accuracy of the Logistic Regression is: 0.8
'''
#查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

#利用热力图对结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

'''
结果如下:
The confusion matrix result:
 [[10  0  0]
 [ 0  7  3]
 [ 0  3  7]]
'''

在这里插入图片描述

三、逻辑回归原理简介

当z≥0 时,y≥0.5,分类为1,当 z<0时,y<0.5,分类为0,其对应的y值我们可以视为类别为1的概率预测值。Logistic回归虽然名字里带有“回归”,但它实际上是一种分类方法。主要用于两类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:
在这里插入图片描述

对应的函数图像可以表示如下:

import numpy as np
import matplotlib.pyplot as plt
x=np.arange(-5,5,0.01)
y=1/(1+np.exp(-x))

plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

在这里插入图片描述

通过上图,我们可以发现Logistic函数是单调递增函数,并且在z=0
而回归的基本方程,
将回归方程写入其中为:
在这里插入图片描述

所以,在这里插入图片描述
从原理上来说,逻辑回归其实是实现了一个决策边界:对于函数在这里插入图片描述
当z≥0 时,y≥0.5,分类为1,当 z<0时,y<0.5,分类为0,其对应的y值我们可以视为类别为1的概率预测值。
对于模型的训练而言:实际上就是利用数据求解出对应的模型的特定的w,从而得到一个针对与当前数据的特征逻辑回归模型。
而对于多分类而言:将多个二分类的逻辑回归组合,即可实现二分类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值