牛顿法的图形和理论说明

牛顿法

一、图形解释牛顿法过程

  1. 在函数 f(x) 上任取一点A,作函数在A点的切线,交 X 轴于B点
  2. 过B点作关于X轴的垂线交函数图像于C点
  3. 再过C点作函数的切线,交X轴于D点
  4. 如此重复,逼近函数 f(x) 交x轴的0点

设 A 点 坐 标 为 ( θ 0 , f ( θ 0 ) ) , B 点 坐 标 为 ( θ 1 , f ( θ 1 ) ) . . . 以 此 类 推 , 则 有 : 设A点坐标为(\theta_0,f(\theta_0)),B点坐标为(\theta_1,f(\theta_1))...以此类推,则有: A(θ0,f(θ0)),B(θ1,f(θ1))...

过 A 点 直 线 于 x 轴 的 夹 角 为 : f ′ ( θ 0 ) = f ( θ 0 ) θ 0 − θ 1 过A点直线于x轴的夹角为:f'(\theta_0)=\frac{f(\theta_0)}{\theta_0-\theta_1} A线xf(θ0)=θ0θ1f(θ0)

∴ θ 1 = θ 0 − f ( θ 0 ) f ′ ( θ 0 ) \therefore\theta_1=\theta_0-\frac{f(\theta_0)}{f'(\theta_0)} θ1=θ0f(θ0)f(θ0)

. . . ... ...

θ t + 1 = θ t − f ( θ t ) f ′ ( θ t ) \theta_t{_+}{_1}=\theta_t-\frac{f(\theta_t)}{f'(\theta_t)} θt+1=θtf(θt)f(θt)

收 敛 : 当 θ t + 1 = θ t 收 敛 , 此 时 f ( θ t + 1 ) = f ( θ t ) 收敛:当\theta_t{_+}{_1}=\theta_t收敛,此时f(\theta_t{_+}{_1})=f(\theta_t) θt+1=θtf(θt+1)=f(θt)

求 f ′ ( x ) 的 零 点 : 求f'(x)的零点: f(x)

θ t + 1 = θ t − f ′ ( θ t ) f ′ ′ ( θ t ) \theta_t{_+}{_1}=\theta_t-\frac{f'(\theta_t)}{f''(\theta_t)} θt+1=θtf(θt)f(θt)

收 敛 : 当 θ t + 1 = θ t 收 敛 , 此 时 f ’ ( θ t + 1 ) = f ′ ( θ t ) 收敛:当\theta_t{_+}{_1}=\theta_t收敛,此时f’(\theta_t{_+}{_1})=f'(\theta_t) θt+1=θtf(θt+1)=f(θt)

求 f ( n ) 的 零 点 : 求f{^(}{^n}{^)}的零点: f(n)

θ t + 1 = θ t − f ( n ) ( θ t ) f ( n + 1 ) ( θ t ) \theta_t{_+}{_1}=\theta_t-\frac{f{^(}{^n}{^)}(\theta_t)}{f{^(}{^n}{^+}{^1}{^)}(\theta_t)} θt+1=θtf(n+1)(θt)f(n)(θt)

二、数学证明解释牛顿法

  1. Hesse矩阵

KaTeX parse error: Undefined control sequence: \matrix at position 16: H(f) = \left[ \̲m̲a̲t̲r̲i̲x̲{ \frac{\part…

  1. 泰勒公式
    f ( x k + 1 ) = f ( x k ) + f ′ ( x k ) ( x k + 1 − x k ) + ⋯ + f ( n ) ( x k ) ( x k + 1 − x k ) n n ! + f ( n + 1 ) ( ε ) ( x k + 1 − x k ) n + 1 ( n + 1 ) ! f(x{^k}{^+}{^1})=f(x^k)+f'(x^k)(x{^k}{^+}{^1}-x^k)+\cdots+\frac{f{^(}{^n}{^)}(x^k)(x{^k}{^+}{^1}-x^k)^n}{n!}+\frac{f{^(}{^n}{^+}{^1}{^)}(\varepsilon)(x{^k}{^+}{^1}-x^k)^{^n}{^+}{^1}}{(n+1)!} f(xk+1)=f(xk)+f(xk)(xk+1xk)++n!f(n)(xk)(xk+1xk)n+(n+1)!f(n+1)(ε)(xk+1xk)n+1

    f ( x k + 1 ) 在   x = x k   处 一 阶 展 开 : f(x{^k}{^+}{^1})在\ x=x^k\ 处一阶展开: f(xk+1) x=xk 

    f ( x k + 1 ) = f ( x k ) + f ′ ( x k ) ( x k + 1 − x k ) = 0 f(x{^k}{^+}{^1})=f(x^k)+f'(x^k)(x{^k}{^+}{^1}-x^k)=0 f(xk+1)=f(xk)+f(xk)(xk+1xk)=0

    化 简 得 : x k + 1 = x k − f ( x k ) f ′ ( x k ) 化简得:x{^k}{^+}{^1}=x^k-\frac{f(x^k)}{f'(x^k)} xk+1=xkf(xk)f(xk)

    f ( x k + 1 ) 在   x = x k   处 二 阶 展 开 : f(x{^k}{^+}{^1})在\ x=x^k\ 处二阶展开: f(xk+1) x=xk 

    f ( x k + 1 ) = f ( x k ) + f ′ ( x k ) ( x k + 1 − x k ) + f ′ ′ ( x k ) ( x k + 1 − x k ) 2 2 ! f(x{^k}{^+}{^1})=f(x^k)+f'(x^k)(x{^k}{^+}{^1}-x^k)+\frac{f''(x^k)(x{^k}{^+}{^1}-x^k)^2}{2!} f(xk+1)=f(xk)+f(xk)(xk+1xk)+2!f(xk)(xk+1xk)2

    令 f ′ ( x k + 1 ) = 0 , 对 x k + 1 求 导 : 令f'(x{^k}{^+}{^1})=0,对x{^k}{^+}{^1}求导: f(xk+1)=0,xk+1

    x k + 1 = x k − f ′ ( x k ) f ′ ′ ( x k ) x{^k}{^+}{^1}=x^k-\frac{f'(x^k)}{f''(x^k)} xk+1=xkf(xk)f(xk)

    推广到多维:
    x k + 1 = x k − [ H ( f ) ] − 1 ∂ f ( x k ) x{^k}{^+}{^1}=x^k-[H(f)]{^-}{^1}\partial f(x^k) xk+1=xk[H(f)]1f(xk)

    S k = − [ H ( f ) ] − 1 ∂ f ( x k ) — — 搜 索 方 向 S_k=-[H(f)]{^-}{^1}\partial f(x^k)——搜索方向 Sk=[H(f)]1f(xk)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值