2021-1 无向图中v到w最短路径 与 连通子图的个数 c++

本文介绍了图算法中的最短路径搜索和连通分量的计算。通过广度优先搜索找到从起点到任意点的最短路径,并实现了一个CC类用于查找和分析图的连通分量,包括判断两点是否在同一连通分量内,获取连通分量数量以及分量ID。示例代码展示了如何使用这些方法处理实际图数据。
摘要由CSDN通过智能技术生成

最短路径

从指定起点s做广度优先搜索,总能找到一条从s到v的最短路径,O(V+E)。
头文件 Paths.h

#include"Paths.h"
void findShortestPath(Graph& G, int s, int v) {
	Paths pathG(G, s);//默认广搜,下面打印最短路径
	if (pathG.hasPathto(v)) {
		for (auto& w : pathG.pathTo(v)) {
			if (w == s) printf_s("%2d ", s);
			else
				printf_s("-%2d ", w);
		}
		printf_s("\n");
	}
	else {
		printf_s("s v unconnected.\n");
	}
}

//test
int main() {
	Graph G("data.txt");
	findShortestPath(G, 11, 4);
	system("pause");
	return 0;
}

连通子图的个数

对每个未标记的节点做深度优先搜索,搜索次数即连通子图个数,O(V+E)。
头文件 Graph.h

#include"Graph.h"
void dfs(Graph&, int, vector<bool>*);
int numOfConnectedSubgraphs(Graph &G) {
	int ans = 0;
	vector<bool>* marked = new vector<bool>(G.V(), false);
	for (int i = 0; i < G.V(); ++i) {
		if (!marked->at(i)) {
			dfs(G, i,marked);
			++ans;
		}
	}
	return ans;
}

void dfs(Graph& G, int v, vector<bool>* marked) {
	marked->at(v) = true;
	for (auto& next : G.adj(v)) {
		if(!marked->at(next))
			dfs(G, next,marked);
	}
}

int main() {
	Graph G("data.txt");
	cout << numOfConnectedSubgraphs(G) << endl;
	system("pause");
	return 0;
}

连通分量的API 及其实现

在这里插入图片描述
头文件见 Graph.h

cc.h

#pragma once
#include"Graph.h"

#define out(x) cout<<x<<" "
#define hh printf_s("\n")
//联通分量
class CC
{
public:
	CC(Graph& G);

	bool connected(int v, int w) { return m_id->at(v) == (*m_id)[w]; }
	int count() { return m_count; }
	int id(int v) { return m_id->at(v); }
private:
	vector<int>* m_visited = nullptr;
	vector<int>* m_id = nullptr;//属于哪一个联通分量: 0 ~ m_count-1
	int m_count = 0;

	void dfs(Graph& G, int start);
};

void testCC();

cc.cpp

#include "CC.h"

CC::CC(Graph& G)
{
	int n = G.V();
	m_visited = new vector<int>(n, 0);
	m_id = new vector<int>(n, -1);

	for (int s = 0; s < n; ++s) {
		if (!m_visited->at(s)) {
			dfs(G, s);
			m_count++;
		}
	}
}

void CC::dfs(Graph& G, int start)
{
	m_visited->at(start) = 1;
	m_id->at(start) = m_count;//当前深度搜索中发现的都是同一个id

	for (auto& next : G.adj(start))
	{
		if (!m_visited->at(next)) {
			dfs(G, next);
		}
	}
}

void testCC()
{
	Graph G("data.txt");
	CC search(G);

	out("0 10 connected ? ");
	out((search.connected(0, 10) ? "yes" : "no")),hh;
	out("0  belongs to subG_i "), out(search.id(0)), hh;
	out("10 belongs to subG_i "), out(search.id(10)), hh;
	out("How many ConnectedSubgraphs ? "), out(search.count()), hh;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值