GPT(Generative Pre-trained Transformer)是由OpenAI提出的一种预训练语言模型,应用广泛,包括自动问答、对话生成、文本摘要等任务。本文将详细介绍如何使用Python搭建GPT模型。
- 准备数据
要训练GPT模型,首先需要准备数据。数据可以是任何文本数据,比如新闻、小说、博客等。在这里,我们使用了一个著名的小说数据集:Gutenberg语料库。
Gutenberg语料库是一个免费的电子书存储库,包含超过6万本免费电子书。从Gutenberg语料库中下载的电子书是.txt文件格式,我们可以直接使用Python读取这些文件。
以下是准备数据集的代码:
import os
import requests
import zipfile
# 下载数据集
url = "http://www.gutenberg.org/files/11/11-0.txt"
path = "data/11-0.txt"
if not os.path.exists(path):
r = requests.get(url)
with open(path, "wb") as f:
f.write(r.content)
# 读取数据集
with open(path, "r", encoding="utf-8") as f:
data = f.r