一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2
条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
"""
m=len(obstacleGrid)
n=len(obstacleGrid[0])
way=[[1 for i in range(n)] for i in range(m)]#第一行和第一列一定是1种走法
flag=False
for i in range(m):#但是第一行第一列如果一旦有一个路障,后面都不能走
if obstacleGrid[i][0]==1:
way[i][0]=0
flag=True
if flag:
way[i][0]=0
flag=False
for i in range(n):
if obstacleGrid[0][i]==1:
way[0][i]=0
flag=True
if flag:
way[0][i]=0
for i in range(1,m):
for j in range(1,n):
if obstacleGrid[i][j]==1:#如果这个格子是障碍物,无法走
way[i][j]=0
else:
way[i][j]=way[i-1][j]+way[i][j-1]#其他格子走法=它上面的格子+左面的格子
return way[m-1][n-1]