LeetCode 63.不同路径II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 的值均不超过 100。

示例 1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

 

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
        m=len(obstacleGrid)
        n=len(obstacleGrid[0])
        way=[[1 for i in range(n)] for i in range(m)]#第一行和第一列一定是1种走法
        flag=False
        for i in range(m):#但是第一行第一列如果一旦有一个路障,后面都不能走
            if obstacleGrid[i][0]==1:
                way[i][0]=0
                flag=True
            if flag:
               way[i][0]=0 
        flag=False
        for i in range(n):
            if obstacleGrid[0][i]==1:
                way[0][i]=0
                flag=True
            if flag:
               way[0][i]=0 
        for i in range(1,m):
            for j in range(1,n):
                if obstacleGrid[i][j]==1:#如果这个格子是障碍物,无法走
                    way[i][j]=0
                else:
                    way[i][j]=way[i-1][j]+way[i][j-1]#其他格子走法=它上面的格子+左面的格子
        return way[m-1][n-1]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值