详解ReID的各部分组成及Trick——训练策略(Training strategy)

       训练策略基本上对于每一个深度学习方法来说都很重要,选用到好的优化器或者学习策略可以使得我们的模型更快的收敛到最优值,比较常见需要调节的有如下:


1、学习率(Learning rate)

       在ReID中BoT把学习率设置为3.5xle-4,之后很多工作都沿用了这个学习率,一个好的学习率可以有助于我们收敛,当然对于不同的数据集来说,学习率的设定是不同的,要在一定范围进行调节。
       关于学习率可以参考以下文章:https://zhuanlan.zhihu.com/p/41681558


2、Batch Size

       ReID中的Batch Size设置与其他的深度学习任务有一些区别,它涉及到两个参数P(一个batch中涉及到的不同类别的样本数量)和K(一个batch中涉及到的同一个类别的样本的样本数量)。在BoT的工作中,对Batch Size的大小和P、K的设置做了探究,实验如下表,不同的数值对最终的实验结果还是有很大的影响的。
在这里插入图片描述


3、Warm up

       Warm up的提出思路立足于作者认为在minbatch学习中,一开始的方差很大,学习到的权重很不稳定,这会导致模型学习剧烈波动。虽然使用0.01来学习最后会收敛,但是收敛到的点并不是最好的点,而使用了Warm up策略可以使得一开始学习率小,学习波动小,可以收敛到更好的收敛点。个人觉得是一些权重在一开始大的学习率下进行学习,造成了大的波动,学偏了,在后面如何调节都很难再调节回来了,而Warm up在初始的时候可以对模型的权重进行小学习率的微调,不会有剧烈波动,有利于之后的学习,这也造成了用Warm up策略学习到了效果普遍较好一些。
       关于Warm up可以参考以下文章:https://www.zhihu.com/question/338066667



4、Lr scheduler

       Lr scheduler在pytorch中集成了六种方法,可以在torch.optim.lr_scheduler中调用,主要分为三大类:
       1)有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和余弦退火CosineAnnealing。
       2)自适应调整:自适应调整学习率 ReduceLROnPlateau。
       3)自定义调整:自定义调整学习率 LambdaLR。
       好的学习率的衰减策略选择可以帮助模型收敛到最优值。
关于学习率方法的参考链接:https://blog.csdn.net/zisuina_2/article/details/103258573
在这里插入图片描述


5、Backbone freeze

       在ReID任务中,通常会选择一个在ImageNet上预训练过的模型来作为Backbone,如ResNet,并根据任务在后面添加相应的分类器,随机初始化分类器参数。为了更好地初始化分类器的参数,在训练开始时冻结网络参数而不更新(2k迭代),只进行训练分类器参数。而在经过2k迭代后,将冻结解除,训练包括Backbone的整体模型,个人觉得这样做的目的是在Warm up阶段可以让分类器权重调节到一个比较好的位置,而不会因为分类器随机初始化的参数让Backbone中的权重学偏。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值