ECCV2024 Tracking 汇总

一、OneTrack: Demystifying the Conflict Between Detection and Tracking in End-to-End 3D Trackers

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/01174.pdf
在这里插入图片描述在这里插入图片描述

在这里插入图片描述




二、VETRA: A Dataset for Vehicle Tracking in Aerial Imagery

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/11352.pdf
在这里插入图片描述
在这里插入图片描述




三、MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/00926.pdf
在这里插入图片描述




四、Boosting 3D Single Object Tracking with 2D Matching Distillation and 3D Pre-training

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/01900.pdf
在这里插入图片描述




五、Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/00113.pdf
在这里插入图片描述

在这里插入图片描述





六、Omni6DPose: A Benchmark and Model for Universal 6D Object Pose Estimation and Tracking

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/09574.pdf
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述




七、SPAMming Labels: Efficient Annotations for the Trackers of Tomorrow

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/01927.pdf
在这里插入图片描述




八、Empowering Embodied Visual Tracking with Visual Foundation Models and Offline RL

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/09241.pdf
在这里插入图片描述

在这里插入图片描述




九、Decomposition Betters Tracking Everything Everywhere

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/09112.pdf
在这里插入图片描述

在这里插入图片描述




十、Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation

paper: https://eccv2024.ecva.net/virtual/2024/poster/2120
在这里插入图片描述
在这里插入图片描述




十一、Walker: Self-supervised Multiple Object Tracking by Walking on Temporal Appearance Graphs

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/01205.pdf
在这里插入图片描述

在这里插入图片描述




十二、BlinkVision: A Benchmark for Optical Flow, Scene Flow and Point Tracking Estimation using RGB Frames and Events

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/08381.pdf
在这里插入图片描述




十三、3D Single-object Tracking in Point Clouds with High Temporal Variation

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/01145.pdf
在这里插入图片描述

在这里插入图片描述




十四、Beyond MOT: Semantic Multi-Object Tracking

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/05182.pdf
在这里插入图片描述

在这里插入图片描述




十五、PapMOT: Exploring Adversarial Patch Attack against Multiple Object Tracking

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/06758.pdf
在这里插入图片描述

在这里插入图片描述




十六、SemTrack: A Large-scale Dataset for Semantic Tracking in the Wild

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/03555.pdf
在这里插入图片描述




十七、Enhancing Tracking Robustness with Auxiliary Adversarial Defense Networks

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/06271.pdf
在这里插入图片描述
在这里插入图片描述




十八、JDT3D: Addressing the Gaps in LiDAR-Based Tracking-by-Attention

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/08296.pdf
在这里插入图片描述
在这里插入图片描述




十九、Diff-Tracker: Text-to-Image Diffusion Models are Unsupervised Trackers

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/04096.pdf
在这里插入图片描述
在这里插入图片描述




二十、CoTracker: It is Better to Track Together

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/07890.pdf
在这里插入图片描述

在这里插入图片描述




二十一、TAPTR: Tracking Any Point with Transformers as Detection

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/02422.pdf
在这里插入图片描述
在这里插入图片描述




二十二、DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/03799.pdf
在这里插入图片描述在这里插入图片描述




二十三、TAPTR: Tracking Any Point with Transformers as Detection

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/03799.pdf
在这里插入图片描述




二十四、Trackastra: Transformer-based cell tracking for live-cell microscopy

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/09819.pdf
在这里插入图片描述
在这里插入图片描述




二十五、Local All-Pair Correspondence for Point Tracking

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/01595.pdf
在这里插入图片描述

在这里插入图片描述




二十六、Self-Supervised Any-Point Tracking by Contrastive Random Walks

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/02209.pdf
在这里插入图片描述
在这里插入图片描述




二十七、Large-Scale Multi-Hypotheses Cell Tracking Using Ultrametric Contours Maps

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/10114.pdf
在这里插入图片描述




二十八、SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/03832.pdf
在这里插入图片描述
在这里插入图片描述




二十九、EgoBody3M: Egocentric Body Tracking on a VR Headset using a Diverse Dataset

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/10261.pdf
在这里插入图片描述

在这里插入图片描述




三十、Lost and Found: Overcoming Detector Failures in Online Multi-Object Tracking

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/09351.pdf
还是sort框架,把brith and kill给网络化了
在这里插入图片描述

在这里插入图片描述




三十一、Track Everything Everywhere Fast and Robustly

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/00418.pdf
在这里插入图片描述

在这里插入图片描述




三十二、Exploring the Feature Extraction and Relation Modeling For Light-Weight Transformer Tracking

paper: https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/04168.pdf
在这里插入图片描述
在这里插入图片描述

### 参与ECCV 2024关于视觉重建的研究或会议 #### 研究论文和主题概述 欧洲计算机视觉国际会议(ECCV)是一个重要的学术活动,专注于计算机视觉领域最新的研究进展。对于即将举行的ECCV 2024,预计会有大量涉及视觉重建方面的高质量研究工作被提交并讨论。 视觉重建是指通过图像或其他形式的数据来恢复三维场景结构的过程,在此过程中可能涉及到多种技术和算法的应用。具体来说,该领域的研究可以分为几个主要方向: - **多视角几何**:利用来自不同角度拍摄的一系列二维图片构建物体或环境的三维模型[^1]。 - **单目深度估计**:仅依靠一张照片预测其对应的深度图,从而实现简单的3D建模效果。 - **光场成像技术**:捕捉光线的方向信息以获得更精确的空间感知能力。 - **基于学习的方法**:采用机器学习尤其是深度神经网络来进行高效的特征提取以及复杂的映射关系建立。 为了更好地准备参加此类高水平的专业论坛,建议关注以下几个方面的工作: - 浏览往届ECCV及其他顶级会议上发表的相关文章,了解当前最前沿的技术趋势和发展动态; - 探索开源项目库中的实际案例分析,加深对理论知识的理解程度; - 积极参与到在线社区和技术交流平台上的讨论当中去,与其他研究人员分享见解、解决问题共同进步。 ```python import numpy as np from skimage import io, color from matplotlib import pyplot as plt def load_image(file_path): img = io.imread(file_path) gray_img = color.rgb2gray(img) return gray_img image_data = load_image('example.jpg') plt.imshow(image_data, cmap='gray', interpolation='nearest') plt.show() ``` 上述代码展示了如何加载并显示灰度化处理后的测试图像,这一步骤通常作为后续预处理的基础操作之一用于各种类型的视觉重建任务之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值