E - Find The Multiple
题意:找一个能整除n的数m,对m的要求是只有0和1组成。n不超过200,m长度不超过100.
思路:很多人都写了一个假算法,就是在unsigned long long 的范围里面找就行了,虽然也A了,但博主想在这里提一下正确的思路。
首先用到了同余定理
即以任意x为起点,它的临界点为y=[x(mod n) * 10(mod n)](mod n)
和z=(y+1) (mod n)
只需要找到一条由1至0的路径,然后输出路径就好了
代码如下:
#include<iostream>
#include<queue>
using namespace std;
void bfs();
void dfs(int);
void ins();
int n;
int pr[210];
bool V[210];
int A[210][2];//利用邻接表存储每个点的临接点
int main()
{
while(cin>>n && n!=0)
{
if(n==1)
cout<<n<<endl;
else
{
ins();//建图
bfs();
cout<<endl;
}
}
return 0;
}
void ins()
{
for(int i=1;i<=n-1;i++)
{
int p=( (i%n)*(10%n) ) %n;//同余定理
A[i][0]=p;//乘十
A[i][1]=(p+1)%n;//乘十加一
}
}
void bfs()//
{
queue<int> Q;
int i,j,k;
for(i=0;i<=n;i++)
pr[i]=i;
memset(V,0,sizeof(V));
Q.push(1);
V[1]=true;
while(V[0]==false)
{
int x=Q.front();
Q.pop();
for(i=0;i<=1;i++)
{
int y=A[x][i];
if(!V[y])
{
pr[y]=x;
Q.push(y);
V[y]=1;
}
}
}
cout<<1;//1为起点
dfs(0);
}
void dfs(int x)//递归查找路径
{
if(x!=1)
{
dfs(pr[x]);
int c=A[pr[x]][0];
if(c==x)
printf("0");//乘十
else
printf("1");//乘十加一
}
return ;
}
K - Fire!
思路:一个bfs中也可以有两个不同的物体运动。。
#include<iostream>
#include<queue>
#include<cstring>
#include<stdio.h>
using namespace std;
char map[2005][2005];
struct node
{
int x, y;
char s;
int step;
};
int n, m;
int dir[4][2] = { -1,0,1,0,0,-1,0,1 };
bool vis[2005][2005];
void solve()
{
node person, fire;
queue<node>Q;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if (map[i][j] == 'J')
{
vis[i][j] = 1;
person.x = i, person.y = j;
person.s = 'J';
person.step = 0;
}
else if (map[i][j] == 'F')
{
fire.x = i, fire.y = j;
fire.s = 'F';
fire.step = 0;
Q.push(fire);
}
Q.push(person);
bool flag = false;
int time;
while (!Q.empty())
{
node u = Q.front();Q.pop();
if (u.s == 'J' &&(u.x == 1 || u.x == n || u.y == 1 || u.y == m))
{
flag = true;
time = u.step;
break;
}
node newnode;
for (int i = 0;i < 4;i++)
{
newnode.x = u.x + dir[i][0];
newnode.y = u.y + dir[i][1];
newnode.step = u.step + 1;
newnode.s = u.s;
if (map[newnode.x][newnode.y] == '.')
{
if (u.s == 'F')
{
map[newnode.x][newnode.y] = 'F';
Q.push(newnode);
}
else
{
if (!vis[newnode.x][newnode.y])
{
vis[newnode.x][newnode.y] = 1;
Q.push(newnode);
}
}
}
}
}
if (flag)
printf("%d\n", time+1);
else
printf("IMPOSSIBLE\n");
}
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
memset(vis, 0, sizeof(vis));
scanf("%d %d", &n, &m);
for (int i = 1;i <= n;i++)
scanf("%s", map[i] + 1);
solve();
}
}