kuangbin专题一简单搜索总结

E - Find The Multiple
题意:找一个能整除n的数m,对m的要求是只有0和1组成。n不超过200,m长度不超过100.
思路:很多人都写了一个假算法,就是在unsigned long long 的范围里面找就行了,虽然也A了,但博主想在这里提一下正确的思路。
首先用到了同余定理
即以任意x为起点,它的临界点为y=[x(mod n) * 10(mod n)](mod n)
和z=(y+1) (mod n)
只需要找到一条由1至0的路径,然后输出路径就好了
代码如下:

#include<iostream>
#include<queue>
using namespace std;

void bfs();
void dfs(int);
void ins();
int n;
int pr[210];
bool V[210];
int A[210][2];//利用邻接表存储每个点的临接点

int main()
{
    while(cin>>n && n!=0)
    {
        if(n==1)
            cout<<n<<endl;
        else
        {
            ins();//建图
            bfs();
            cout<<endl;
        }
    }
    return 0;
}

void ins()
{
    for(int i=1;i<=n-1;i++)
    {
        int p=( (i%n)*(10%n) ) %n;//同余定理
        A[i][0]=p;//乘十
        A[i][1]=(p+1)%n;//乘十加一
    }
}

void bfs()//
{
    queue<int> Q;
    int i,j,k;
    for(i=0;i<=n;i++)
        pr[i]=i;
    memset(V,0,sizeof(V));
    Q.push(1);
    V[1]=true;
    while(V[0]==false)
    {
        int x=Q.front();
        Q.pop();
        for(i=0;i<=1;i++)
        {
            int y=A[x][i];
            if(!V[y])
            {
                pr[y]=x;
                Q.push(y);
                V[y]=1;
            }
        }

    }
    cout<<1;//1为起点
    dfs(0);
}

void dfs(int x)//递归查找路径
{
    if(x!=1)
    {   
        dfs(pr[x]);
        int c=A[pr[x]][0];
    if(c==x)
        printf("0");//乘十
    else
        printf("1");//乘十加一
     }
    return ;
}

K - Fire!
思路:一个bfs中也可以有两个不同的物体运动。。

#include<iostream>
#include<queue>
#include<cstring>
#include<stdio.h>
using namespace std;
char map[2005][2005];
struct node
{
    int x, y;
    char s;
    int step;
};
int n, m;
int dir[4][2] = { -1,0,1,0,0,-1,0,1 };
bool vis[2005][2005];
void solve()
{
    node person, fire;
    queue<node>Q;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            if (map[i][j] == 'J')
            {
                vis[i][j] = 1;
                person.x = i, person.y = j;
                person.s = 'J';
                person.step = 0;
            }
            else if (map[i][j] == 'F')
            {
                fire.x = i, fire.y = j;
                fire.s = 'F';
                fire.step = 0;
                Q.push(fire);
            }

    Q.push(person);


    bool flag = false;
    int time;
    while (!Q.empty())
    {
        node u = Q.front();Q.pop();

        if (u.s == 'J' &&(u.x == 1 || u.x == n || u.y == 1 || u.y == m))
        {
            flag = true;
            time = u.step;
            break;
        }
        node newnode;
        for (int i = 0;i < 4;i++)
        {
            newnode.x = u.x + dir[i][0];
            newnode.y = u.y + dir[i][1];
            newnode.step = u.step + 1;
            newnode.s = u.s;
            if (map[newnode.x][newnode.y] == '.')
            {
                if (u.s == 'F')
                {
                    map[newnode.x][newnode.y] = 'F';
                    Q.push(newnode);
                }
                else
                {
                    if (!vis[newnode.x][newnode.y])
                    {
                        vis[newnode.x][newnode.y] = 1;
                        Q.push(newnode);
                    }
                }
            }
        }
    }
    if (flag)
        printf("%d\n", time+1);
    else
        printf("IMPOSSIBLE\n");
}
int main()
{
    int T;
    scanf("%d", &T);
    while (T--)
    {
        memset(vis, 0, sizeof(vis));
        scanf("%d %d", &n, &m);
        for (int i = 1;i <= n;i++)
            scanf("%s", map[i] + 1);
        solve();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值