pq原理简介和代码

pq算法代码及基本原理

原理

Product quantization,国内有人直译为乘积量化,这里的乘积是指笛卡尔积(Cartesian product),意思是指把原来的向量空间分解为若干个低维向量空间的笛卡尔积,并对分解得到的低维向量空间分别做量化(quantization)。这样每个向量就能由多个低维空间的量化code组合表示。算法如下图所示。
PQ算法把D维向量分成m组, 每组进行Kmeans聚类算法.

  1. m组子向量的Kmeans算法可以并行求解
    2)可以将D维的特征压缩成m维,压缩率D/M
    在这里插入图片描述

代码

训练

def fit(self, vecs, iter=20, seed=123):
        """Given training vectors, run k-means for each sub-space and create
        codewords for each sub-space.

        This function should be run once first of all.

        Args:
            vecs (np.ndarray): Training vectors with shape=(N, D) and dtype=np.float32.
            iter (int): The number of iteration for k-means
            seed (int): The seed for random process

        Returns:
            object: self

        """
        assert vecs.dtype == np.float32
        assert vecs.ndim == 2
        N, D = vecs.shape
        assert self.Ks < N, "the number of training vector should be more than Ks"
        assert D % self.M == 0, "input dimension must be dividable by M"
        self.Ds = int(D / self.M)

        np.random.seed
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小涵涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值