[BZOJ4543/3522][POI2014]Hotel加强版(长链剖分+树上DP)

题意简述

给出一棵 n n n 个点的无根树,请在这棵树上选三个互不相同的节点,使得这个三个节点两两之间距离相等,输出方案数即可。
s u b t a s k 1 : ∑ n ≤ 500 subtask1: \sum n≤500 subtask1:n500
s u b t a s k 2 : ∑ n ≤ 5000 subtask2: \sum n≤5000 subtask2:n5000
s u b t a s k 3 : ∑ n ≤ 500000 subtask3: \sum n≤500000 subtask3:n500000

题解

subtask 1:明显是送分点,直接用Floyd跑都可以。
subtask 2:考虑如何写一个树上DP来解决这个问题。
f [ u ] [ i ] f[u][i] f[u][i]表示 u u u子树里距离 u u u i i i的节点个数
g [ u ] [ i ] g[u][i] g[u][i]表示 u u u子树里两个点 x , y x,y x,y到其 L C A LCA LCA的距离都是 d d d, L C A LCA LCA u u u的距离是 d − i d−i di的方案数

g [ u ] [ i ] = ∑ v g [ v ] [ j + 1 ] + f [ u ] [ i ] ∗ f [ v ] [ i − 1 ] g[u][i]=\sum_vg[v][j+1]+f[u][i]*f[v][i-1] g[u][i]=vg[v][j+1]+f[u][i]f[v][i1]
f [ u ] [ i ] = ∑ v f [ v ] [ i − 1 ] f[u][i]=\sum_vf[v][i-1] f[u][i]=vf[v][i1]
注意到当一个节点只有一个时:
g [ u ] [ i ] = g [ v ] [ j + 1 ] g[u][i]=g[v][j+1] g[u][i]=g[v][j+1]
f [ u ] [ i ] = f [ v ] [ i − 1 ] f[u][i]=f[v][i-1] f[u][i]=f[v][i1]
可以用指针转移实现 O ( 1 ) O(1) O(1)
每个节点选择深度最大的那一个点转移即可。
注意到每一个点都属于一个长链,而一条长链中的所有节点都可以 O ( 1 ) O(1) O(1)转移,只有在链顶才会 O ( 该 链 长 度 ) O(该链长度) O()地暴力转移。
因此复杂度: O ( 2 ∑ 链 长 度 ) = O ( n ) O(2\sum 链长度)=O(n) O(2)=O(n)

实现

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#include<ctime>
using namespace std;
#define MAXM 50000
#define MAXK 1000
#define LL long long
int n,x,y,ecnt;
struct edge
{int nxt,to;
}e[MAXM*2+5];
LL space[MAXM*10+1];
LL *f[MAXM+5],*dp[MAXM+5],*tot=space+MAXM;
int dep[MAXM+5],id[MAXM+5],pnt;
int head[MAXM+5],fa[MAXM+5];
LL ans=0;
inline int read()  
{  
    int x=0,f=1;char s=getchar();  
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}  
    while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}  
    return x*f;  
}
void add(int u,int v)
{
    e[++ecnt]=(edge){head[u],v};
    head[u]=ecnt;
    e[++ecnt]=(edge){head[v],u};
    head[v]=ecnt;
}
void new_node(int x)
{
    dp[x]=tot;tot=tot+dep[x]*2+1;pnt+=dep[x]*4+2;
    f[x]=tot;tot=tot+dep[x]*2+1;
}
void dfs1(int x)
{
    dep[x]=1;id[x]=0;
    for(int i=head[x];i!=-1;i=e[i].nxt)
    {
        int xnt=e[i].to;
        if(xnt==fa[x])continue;
        fa[xnt]=x;
        dfs1(xnt);
        if(dep[x]<dep[xnt]+1)
        dep[x]=dep[xnt]+1,id[x]=xnt;
    }
}
void dfs2(int x)
{
    dp[x][0]=1;
    if(id[x])
    {
        dp[id[x]]=dp[x]+1;
        f[id[x]]=f[x]-1;//神奇指针
        dfs2(id[x]);
        ans+=f[id[x]][1];
    }
    for(int i=head[x];i!=-1;i=e[i].nxt)
    {
        int xnt=e[i].to;
        if(xnt==fa[x]||xnt==id[x])continue;
        new_node(xnt);
        dfs2(xnt);
        for(int j=dep[xnt];j>=0;j--)
        {
            ans+=dp[x][j]*f[xnt][j+1];
            if(j>0)
            {
                ans+=f[x][j]*dp[xnt][j-1];
                f[x][j]+=dp[x][j]*dp[xnt][j-1];
                dp[x][j]+=dp[xnt][j-1];
            }
            f[x][j]+=f[xnt][j+1];
        }
    }
}
int main()
{
    while(~scanf("%d",&n)&&n)
    {
        pnt=MAXM;
        tot=space+MAXM;
        ecnt=0;ans=0;
        for(int i=1;i<=n;i++)head[i]=-1;
        for(int i=1;i<n;i++)
        {
            x=read(),y=read();
            add(x,y);
        }
        dfs1(1);
        new_node(1);
        dfs2(1);
        printf("%lld\n",ans);
        for(int i=MAXM;i<=pnt;i++)
        space[i]=0;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值