题意简述
给出一棵
n
n
n 个点的无根树,请在这棵树上选三个互不相同的节点,使得这个三个节点两两之间距离相等,输出方案数即可。
s
u
b
t
a
s
k
1
:
∑
n
≤
500
subtask1: \sum n≤500
subtask1:∑n≤500
s
u
b
t
a
s
k
2
:
∑
n
≤
5000
subtask2: \sum n≤5000
subtask2:∑n≤5000
s
u
b
t
a
s
k
3
:
∑
n
≤
500000
subtask3: \sum n≤500000
subtask3:∑n≤500000
题解
subtask 1:明显是送分点,直接用Floyd跑都可以。
subtask 2:考虑如何写一个树上DP来解决这个问题。
f
[
u
]
[
i
]
f[u][i]
f[u][i]表示
u
u
u子树里距离
u
u
u为
i
i
i的节点个数
g
[
u
]
[
i
]
g[u][i]
g[u][i]表示
u
u
u子树里两个点
x
,
y
x,y
x,y到其
L
C
A
LCA
LCA的距离都是
d
d
d,
L
C
A
LCA
LCA到
u
u
u的距离是
d
−
i
d−i
d−i的方案数
有
g
[
u
]
[
i
]
=
∑
v
g
[
v
]
[
j
+
1
]
+
f
[
u
]
[
i
]
∗
f
[
v
]
[
i
−
1
]
g[u][i]=\sum_vg[v][j+1]+f[u][i]*f[v][i-1]
g[u][i]=∑vg[v][j+1]+f[u][i]∗f[v][i−1]
f
[
u
]
[
i
]
=
∑
v
f
[
v
]
[
i
−
1
]
f[u][i]=\sum_vf[v][i-1]
f[u][i]=∑vf[v][i−1]
注意到当一个节点只有一个时:
g
[
u
]
[
i
]
=
g
[
v
]
[
j
+
1
]
g[u][i]=g[v][j+1]
g[u][i]=g[v][j+1]
f
[
u
]
[
i
]
=
f
[
v
]
[
i
−
1
]
f[u][i]=f[v][i-1]
f[u][i]=f[v][i−1]
可以用指针转移实现
O
(
1
)
O(1)
O(1)。
每个节点选择深度最大的那一个点转移即可。
注意到每一个点都属于一个长链,而一条长链中的所有节点都可以
O
(
1
)
O(1)
O(1)转移,只有在链顶才会
O
(
该
链
长
度
)
O(该链长度)
O(该链长度)地暴力转移。
因此复杂度:
O
(
2
∑
链
长
度
)
=
O
(
n
)
O(2\sum 链长度)=O(n)
O(2∑链长度)=O(n)
实现
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
#include<ctime>
using namespace std;
#define MAXM 50000
#define MAXK 1000
#define LL long long
int n,x,y,ecnt;
struct edge
{int nxt,to;
}e[MAXM*2+5];
LL space[MAXM*10+1];
LL *f[MAXM+5],*dp[MAXM+5],*tot=space+MAXM;
int dep[MAXM+5],id[MAXM+5],pnt;
int head[MAXM+5],fa[MAXM+5];
LL ans=0;
inline int read()
{
int x=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
return x*f;
}
void add(int u,int v)
{
e[++ecnt]=(edge){head[u],v};
head[u]=ecnt;
e[++ecnt]=(edge){head[v],u};
head[v]=ecnt;
}
void new_node(int x)
{
dp[x]=tot;tot=tot+dep[x]*2+1;pnt+=dep[x]*4+2;
f[x]=tot;tot=tot+dep[x]*2+1;
}
void dfs1(int x)
{
dep[x]=1;id[x]=0;
for(int i=head[x];i!=-1;i=e[i].nxt)
{
int xnt=e[i].to;
if(xnt==fa[x])continue;
fa[xnt]=x;
dfs1(xnt);
if(dep[x]<dep[xnt]+1)
dep[x]=dep[xnt]+1,id[x]=xnt;
}
}
void dfs2(int x)
{
dp[x][0]=1;
if(id[x])
{
dp[id[x]]=dp[x]+1;
f[id[x]]=f[x]-1;//神奇指针
dfs2(id[x]);
ans+=f[id[x]][1];
}
for(int i=head[x];i!=-1;i=e[i].nxt)
{
int xnt=e[i].to;
if(xnt==fa[x]||xnt==id[x])continue;
new_node(xnt);
dfs2(xnt);
for(int j=dep[xnt];j>=0;j--)
{
ans+=dp[x][j]*f[xnt][j+1];
if(j>0)
{
ans+=f[x][j]*dp[xnt][j-1];
f[x][j]+=dp[x][j]*dp[xnt][j-1];
dp[x][j]+=dp[xnt][j-1];
}
f[x][j]+=f[xnt][j+1];
}
}
}
int main()
{
while(~scanf("%d",&n)&&n)
{
pnt=MAXM;
tot=space+MAXM;
ecnt=0;ans=0;
for(int i=1;i<=n;i++)head[i]=-1;
for(int i=1;i<n;i++)
{
x=read(),y=read();
add(x,y);
}
dfs1(1);
new_node(1);
dfs2(1);
printf("%lld\n",ans);
for(int i=MAXM;i<=pnt;i++)
space[i]=0;
}
}