[2019寒假集训day2]子集(二分)

题面

在这里插入图片描述

题解

签到题。
首先可以证明的是,选出的子集大小一定是奇数个。
考虑先枚举中位数,因此可以排一下序。
设选的中位数位置为 p p p,那么我们需要在 p p p前面和后面分别选出 k k k个,并最大化平均值。
显然,选出的这 2 k 2k 2k个数越靠近右边越好。
这样,每次该加入子集的两个数就是确定的。
复杂度 O ( n 2 ) O(n^2) O(n2)
注意到 p p p左右两边的序列都有单调性。
如果我们发现位置 p p p的最优解也有单调性,那就可以愉快的二分了。
考虑代数证明一下。
设现在已经在 p p p左右两边分别选出了 k − 1 k-1 k1个数,现在考虑再往两边分别加入1个数,平均值没有之前优时满足的情况。
设左边第 i i i次选出数 A i A_i Ai,右边第 i i i次选出数 B i B_i Bi
那么有:
∑ i = 1 k − 1 A i + a p + ∑ i = 1 k − 1 B i 2 k − 1 ≥ ∑ i = 1 k A i + a p + ∑ i = 1 k B i 2 k + 1 \frac{\sum^{k-1}_{i=1}{A_i}+a_p+\sum^{k-1}_{i=1}{B_i}}{2k-1}≥\frac{\sum^{k}_{i=1}{A_i}+a_p+\sum^{k}_{i=1}{B_i}}{2k+1} 2k1i=1k1Ai+ap+i=1k1Bi2k+1i=1kAi+ap+i=1kBi
化简:
( 2 k + 1 ) ( ∑ i = 1 k − 1 A i + a p + ∑ i = 1 k − 1 B i ) ≥ ( 2 k − 1 ) ( ∑ i = 1 k A i + a p + ∑ i = 1 k B i ) (2k+1)(\sum^{k-1}_{i=1}{A_i}+a_p+\sum^{k-1}_{i=1}{B_i})≥(2k-1)(\sum^{k}_{i=1}{A_i}+a_p+\sum^{k}_{i=1}{B_i}) (2k+1)(i=1k1Ai+ap+i=1k1Bi)(2k1)(i=1kAi+ap+i=1kBi)
2 ( ∑ i = 1 k − 1 A i + a p + ∑ i = 1 k − 1 B i ) ≥ ( 2 k − 1 ) ( A k + B k ) 2(\sum^{k-1}_{i=1}{A_i}+a_p+\sum^{k-1}_{i=1}{B_i})≥(2k-1)(A_k+B_k) 2(i=1k1Ai+ap+i=1k1Bi)(2k1)(Ak+Bk)
∑ i = 1 k − 1 A i + a p + ∑ i = 1 k − 1 B i 2 k − 1 ≥ A k + B k 2 \frac{\sum^{k-1}_{i=1}{A_i}+a_p+\sum^{k-1}_{i=1}{B_i}}{2k-1}≥\frac{A_k+B_k}{2} 2k1i=1k1Ai+ap+i=1k1Bi2Ak+Bk
其实就是新加入的平均值小于原来的平均值就不优。
可以发现 A k + B k A_k+B_k Ak+Bk是递减的,数列的平均值是单峰的,符合二分条件。
复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 200000
#define DB double
#define LL long long
int n,a[MAXN+5];
DB sum[MAXN+5];
DB ans;
int main()
{
	//freopen("subset.in","r",stdin);
	//freopen("subset.out","w",stdout);
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	sort(a+1,a+n+1);
	for(int i=1;i<=n;i++)sum[i]=sum[i-1]+a[i];
	for(int i=1;i<=n;i++)
	{
		int l=1,r=min(i-1,n-i),p=0;
		while(l<=r)
		{
			int mid=(l+r)>>1;
			DB k1=(DB)(sum[i]-sum[i-mid]+sum[n]-sum[n-mid+1])/(2*mid-1);
			DB k2=(DB)(a[i-mid]+a[n-mid+1])/2.0;
			if(k1<=k2)p=mid,l=mid+1;
			else r=mid-1;
		}
		DB res=(DB)(sum[i]-sum[i-p-1]+sum[n]-sum[n-p])/(DB)(2*p+1);
		ans=max(ans,res-a[i]);
	}
	printf("%0.5lf\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值