pyhon数据分析A股股票策略实际买卖总结(每月末更新数据)

本文介绍了作者使用Python进行A股股票低位选股的策略,涉及Pandas分析、Dash应用、Plotly图形和Redis缓存。虽然选股成功率100%,但策略尚在学习和优化阶段,重点关注低价股和特定板块的排除。
摘要由CSDN通过智能技术生成

简介

本篇文章主要记录python数据分析a股股票选股后实际买卖的记录。

选股策略

低位寻股,筛选出低位股价股票已经做过调整的股票,做短线交易(不超过7天),不贪,小赚即走。分三个时段,开盘三十分钟,11:00,以及尾盘对股票数据追踪。(注意:本人对股票市场操作并没有太多专业知识,目前正在学习阶段,另外由于只是探索学习阶段,并没有投入过多资金用于周转。)

相关资源

使用python pandas库做数据分析

使用dash库做应用程序(https://dash.plotly.com/

dash-bootstrap(https://dash-bootstrap-components.opensource.faculty.ai/docs/)做页面优化,使用plotly做图(Plotly Python Graphing Library)     

使用redis做数据缓存

金融数据主要来源AKshare库(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值