VSCode中配置命令行参数 在跑程序调试的时候,可以直接使用脚本运行程序,这个时候调试代码只能用pdb ,我觉得不太习惯,而且感觉不是很好,所以想这能不能将运行程序的脚本中的命令直接配置到vscode上,就有了这篇记录。
学习服务器上运行论文代码(二) VScode集成无法激活问题解决。VScode无法加载文件文件 C:\Users\haoqi\Documents\WindowsPowerShell\profile.ps1,因为在此系统上禁止运行脚本.解决方法。
服务器上运行跑深度学习代码(一) 我准备复现的是Point2roof的代码。这是第一次复现论文代码,所以记录一下^ _ ^。从GitHub找到他的项目。先把工程down下来 ^ _ ^。看他工程里面提供的README。这篇里面提到他的数据集,我也顺便下载下来了。目前只是想跑一下代码,好像没必要下载数据集?接下来按照他说的安装环境。我这里是先从网上把PyTorch下载到本地,然后通过WinSCP拖到实验室的服务器里面。WinSCP使用过程就不介绍了。主要是下载时要注意服务器里面的python的版本。
无法加载文件 C:\Users\haoqi\Documents\WindowsPowerShell\profile.ps1,因为在此系统上禁止运行脚本 最好不要删除,在对应路径创建个新建文件夹,把文档移动进去,起到的作用是变相的删除,但是能避免误删。我的解决办法是:删除对应路径下的文件。再次打开vscode就不会报错了。
《Python 计算机视觉编程》学习笔记(十) 本章概述如何通过 Python 接口使用流行的计算机视觉库 OpenCV。 OpenCV 是一个C++ 库,用于(实时)处理计算视觉问题。OpenCV 是一个 C++ 库,它包含了计算机视觉领域的很多模块。除了 C++ 和 C,Python 作为一种简洁的脚本语言,在 C++ 代码基础上的 Python 接口得到了越来越广泛的支持。目前, OpenCV 的 Python 接口仍在发展,不过并不是所有的 OpenCV组件都提供了相应的 Python 接口,此处还有很多函数没有文档说明。OpenCV 2.3.1
《Python 计算机视觉编程》学习笔记(九) 图像分割是将一幅图像分割成有意义区域的过程。区域可以是图像的前景与背景或图像中一些单独的对象。这些区域可以利用一些诸如颜色、边界或近邻相似性等特征进行构建。图论中的图( graph)是由若干节点(有时也称顶点)和连接节点的边构成的集合。图 9-1 给出了一个示例 1。边可以是有向的(图 9-1 中用箭头示出)或无向的,并且这些可能有与它们相关联的权重。图割是将一个有向图分割成两个互不相交的集合,可以用来解决很多计算机视觉方面的问题,诸如立体深度重建、图像拼接和图像分割等计算机视觉方面的不同问题。从图像像素
《Python 计算机视觉编程》学习笔记(八) 本章介绍图像分类和图像内容分类算法。在分类方法中,最简单且用得最多的一种方法之一就是 KNN( K-Nearest Neighbor ,K邻近分类法),这种算法把要分类的对象(例如一个特征向量)与训练集中已知类标记的所有对象进行对比,并由 k 近邻对指派到哪个类进行投票。这种方法通常分类效果较好,但是也有很多弊端:与 K-means 聚类算法一样,需要预先设定 k 值, k 值的选择会影响分类的性能;此外,这种方法要求将整个训练集存储起来,如果训练集非常大,搜索起来就非常慢。对于大训练集,采取某些装箱形式通
《Python 计算机视觉编程》学习笔记(七) 本章将展示如何利用文本挖掘技术对基于图像视觉内容进行图像搜索。阐明了提出利用视觉单词的基本思想。在大型图像数据库上, CBIR( Content-Based Image Retrieval,基于内容的图像检索)技术用于检索在视觉上具相似性的图像。这样返回的图像可以是颜色相似、纹理相似、图像中的物体或场景相似;总之,基本上可以是这些图像自身共有的任何信息。对于高层查询,比如寻找相似的物体,将查询图像与数据库中所有的图像进行完全比较(比如用特征匹配)往往是不可行的。在数据库很大的情况下,这样的查询方式会耗费过多
《Python 计算机视觉编程》学习笔记(六) 本章将介绍几种聚类方法,并展示如何利用它们对图像进行聚类,从而寻找相似的图像组。聚类可以用于识别、划分图像数据集,组织与导航。此外,我们还会对聚类后的图像进行相似性可视化。K-means 是一种将输入数据划分成 k 个簇的简单的聚类算法。 K-means 反复提炼初始评估的类中心,步骤如下:K-means 试图使类内总方差最小:V=∑i=1k∑xj∈ci(xj−μi)2V=\sum_{i=1}^{k} \sum_{x_{j} \in c_{i}}\left(\boldsymbol{x}_{j}-\bol
《Python 计算机视觉编程》学习笔记(五) 本章讲解如何处理多个视图,以及如何利用多个视图的几何关系来恢复照相机位置信息和三维结构。通过在不同视点拍摄的图像,我们可以利用特征匹配来计算出三维场景点以及照相机位置。多视图几何是利用在不同视点所拍摄图像间的关系,来研究照相机之间或者特征之间关系的一门科学。图像的特征通常是兴趣点,本章使用的也是兴趣点特征。多视图几何中最重要的内容是双视图几何。如果有一个场景的两个视图以及视图中的对应图像点,那么根据照相机间的空间相对位置关系、照相机的性质以及三维场景点的位置,可以得到对这些图像点的一些几何关系约束。我们通过
《Python 计算机视觉编程》学习笔记(四) 本章中我们将会讲述如何确定照相机的参数,以及在具体应用中,如增强现实,如何使用图像间的投影变换。针孔照相机模型(有时称为射影照相机模型)是计算机视觉中广泛使用的照相机模型。对于大多数应用来说,针孔照相机模型简单,并且具有足够的精确度。这个名字来源于一种类似暗箱机的照相机。该照相机从一个小孔采集射到暗箱内部的光线。在针孔照相机模型中,在光线投影到图像平面之前,从唯一一个点经过,也就是照相机中心 C。图 4-1 为从照相机中心前画出图像平面的图解。由图像坐标轴和三维坐标系中的 x 轴和 y 轴对齐平行的假设,
《Python 计算机视觉编程》学习笔记(三) 本章讲解图像之间的变换,以及一些计算变换的实用方法。这些变换可以用于图像扭曲变形和图像配准。单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。在这里,平面是指图像或者三维中的平面表面。本质上,单应性变换 H,按照下面的方程映射二维中的点(齐次坐标意义下):[x′y′w′]=[h1h2h3h4h5h6h7h8h9][xyw]或x′=Hx\left[\begin{array}{c}x^{\prime} \\y^{\prime} \\w^{\prime}\end{array}\right]
《Python 计算机视觉编程》学习笔记(二) 本章旨在寻找图像间的对应点和对应区域。Harris 角点检测算法(也称 Harris & Stephens 角点检测器)是一个极为简单的角点检测算法。该算法的主要思想是,如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点。该点就称为角点。我们把图像域中点 x 上的对称半正定矩阵MI=MI(x)M_I=M_I( x)MI=MI(x)定义为:MI=∇I∇IT=[IxIy][IxIy]=[Ix2IxIyIxIyIy2]\boldsymbol{M}_{I}=abla \boldsymbol{I}
Python学习笔记(五) 明白了,大致上是:取出eigvects中的第eigValInd[0]列,第eigValInd[1]列,直到eigValInd值取完。我记得C语言函数要有返回值,这样就能判断函数是否正常执行了。看代码的时候突然想起来了,所以搜了一下,Python好像也有这个要求。如果mat()一下,就是个2*N 的矩阵。函数定义的时候,如果第一个参数使用了关键字绑定,后面的参数也必须使用关键字绑定!这代码有点漂亮,一环套一环。有点顶,接触这些函数嵌套的。N 表示的是矩阵a中不为0的元素个数。