《机器学习实战》学习笔记(二)

第三章 决策树

引言

在这里插入图片描述

流程图表示决策树

正方形代表判断模块(decision block)。

椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。

从判断模块引出的左右箭头称作分支(branch),它可以到达另一个判断模块或者终止模块。

决策树很多任务都是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些(机器从数据集中创造的)规则。

决策树优缺点

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。

缺点:可能会产生过度匹配问题。

适用数据类型:数值型和标称型。

决策树的一般流程

(1)收集数据:可以使用任何方法。
(2)准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
(3)分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
(4)训练算法:构造树的数据结构。
(5)测试算法:使用经验树计算错误率。
(6)使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。

3.1决策树的构造

划分数据集

划分数据集的大原则是:将无序的数据变得更加有序。

信息增益:

在划分数据集之前之后信息发生的变化称为信息增益。

计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。

集合信息的度量方式称为香农熵或者简称为熵 .

熵定义为信息的期望值。
如果待分类的事务可能划分在多个分类之中,符号 x i x_i xi的信息定义为
l ( x i ) = − l o g 2 p ( x i ) l(x_i) = -log_2p(x_i) l(xi)=log2p(xi)

其中 p ( x i ) p(x_i) p(xi)是选择该分类的概率。
为了计算熵,我们需要计算所有类别所有可能值包含的信息期望值,通过下面的公式得到:
H = − ∑ i = 1 n p ( x i ) l o g 2 p ( x i ) H = -\sum_{i=1}^np(x_i)log_2p(x_i) H=i=1np(xi)log2p(xi)

其中n是分类的数目。

计算给定数据集的熵:

代码参考了->这个博客


def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],         #数据集
            [0, 0, 0, 1, 'no'],
            [0, 1, 0, 1, 'yes'],
            [0, 1, 1, 0, 'yes'],
            [0, 0, 0, 0, 'no'],
            [1, 0, 0, 0, 'no'],
            [1, 0, 0, 1, 'no'],
            [1, 1, 1, 1, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [2, 0, 1, 2, 'yes'],
            [2, 0, 1, 1, 'yes'],
            [2, 1, 0, 1, 'yes'],
            [2, 1, 0, 2, 'yes'],
            [2, 0, 0, 0, 'no']]
    #分类属性\
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
    #返回数据集和分类属性
    return dataSet, labels               

def calcShannonEnt(dataSet):
    #计算数据长度
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet: #the the number of unique elements and the
        currentLabel = featVec[-1]
        #如果标签(Label)没有放入统计次数的字典,添加进去
        #key()返回一个字典所有的键。
        if currentLabel not in labelCounts.keys(): 
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    
    #计算熵值
    for key in labelCounts:
        #计算每个特征概率
        prob = float(labelCounts[key])/numEntries
        #概率转换为熵值
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt

dataSet, labels =  createDataSet()
print(dataSet)
print(calcShannonEnt(dataSet))

输出结果:

[[0, 0, 0, 0, 'no'], [0, 0, 0, 1, 'no'], [0, 1, 0, 1, 'yes'], [0, 1, 1, 0, 'yes'], [0, 0, 0, 0, 'no'], [1, 0, 0, 0, 'no'], [1, 0, 0, 1, 'no'], [1, 1, 1, 1, 'yes'], [1, 0, 1, 2, 'yes'], [1, 0, 1, 2, 'yes'], [2, 0, 1, 2, 'yes'], [2, 0, 1, 1, 'yes'], [2, 1, 0, 1, 'yes'], [2, 1, 0, 2, 'yes'], [2, 0, 0, 0, 'no']]
0.9709505944546686

代码的大部分都是为数据的统计做准备,之后将统计值进行计算得到熵值。

划分数据集

遍历整个数据集,循环计算香农熵和splitDataSet()函数,找到最好的特征划分方式。

#最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1                    #特征数量
    baseEntropy = calcShannonEnt(dataSet)                 #计算数据集的香农熵
    bestInfoGain = 0.0                                  #信息增益
    bestFeature = -1                                    #最优特征的索引值
    for i in range(numFeatures):                         #遍历所有特征
        #获取dataSet的第i个所有特征
        #将dataSet中的数据按行依次放入example中,然后取得example中的example[i]元素放入featList中
        #对数据的遍历一般都是按行,这种方法是取列的方法
        featList = [example[i] for example in dataSet]
        #创建set集合{},元素不可重复
        #set()函数创建一个无序不重复元素集,可进行关系测试,删除重复数据,还可以计算交集、差集、并集等。
        uniqueVals = set(featList)                         
        newEntropy = 0.0                                  #经验条件熵
        for value in uniqueVals:                         #计算信息增益
            subDataSet = splitDataSet(dataSet, i, value)         #subDataSet划分后的子集
            prob = len(subDataSet) / float(len(dataSet))           #计算子集的概率
            newEntropy += prob * calcShannonEnt(subDataSet)     #根据公式计算经验条件熵
        infoGain = baseEntropy - newEntropy                     #信息增益
        print("第%d个特征的增益为%.3f" % (i, infoGain))            #打印每个特征的信息增益
        if (infoGain > bestInfoGain):                             #计算信息增益
            bestInfoGain = infoGain                             #更新信息增益,找到最大的信息增益
            bestFeature = i                                     #记录信息增益最大的特征的索引值
    return bestFeature                                             #返回信息增益最大的特征的索引值

dataSet, labels =  createDataSet()
print(chooseBestFeatureToSplit(dataSet))

输出结果为:

0个特征的增益为0.0831个特征的增益为0.3242个特征的增益为0.4203个特征的增益为0.363
最佳特征值是第2

前面代码已经的到了划分数据集最优的特征,后面就可以开始构建决策树了。

构建决策树

建决策树工作原理如下:
得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分。第一次划分之后,数据将被向下传递到树分支的下一个节点,在这个节点 上,我们可以再次划分数据。因此我们可以采用递归的原则处理数据集。

递归结束的条件是:
程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有
相同的分类。
实现代码如下:

#返回出现次数最多的分类名称
def majorityCnt(classList):
    classCount = {}
    for vote in classList:                                        #统计classList中每个元素出现的次数
        if vote not in classCount.keys():
            classCount[vote] = 0   
        classCount[vote] += 1
    #根据字典的值降序排序
    sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)        
    return sortedClassCount[0][0]                                #返回classList中出现次数最多的元素

#创建决策树
def createTree(dataSet, labels, featLabels):
    classList = [example[-1] for example in dataSet]            #取分类标签(是否放贷:yes or no)
        #如果类别完全相同则停止继续划分
        #count()方法用于统计字符串里某个字符或子字符串出现的次数。可选参数为在字符串搜索的开始与结束位置。
    if classList.count(classList[0]) == len(classList):        
        return classList[0]
    if len(dataSet[0]) == 1:                                    #遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)                #选择最优特征
    bestFeatLabel = labels[bestFeat]                            #最优特征的标签
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}                                    #根据最优特征的标签生成树
    del(labels[bestFeat])                                        #删除已经使用特征标签
    featValues = [example[bestFeat] for example in dataSet]        #得到训练集中所有最优特征的属性值
    uniqueVals = set(featValues)                                #去掉重复的属性值
    for value in uniqueVals:                                    #遍历特征,创建决策树。                       
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
    return myTree

dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
print(myTree)

创建的树为:

{'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}

从左边开始,第一个关键字“有自己的房子”是第一个划分数据集的特征名称,该关键字的值也是另一个数据字典第二个关键字是“有自己的房子”特征划分的数据集,这些关键字的值是“有自己的房子”节点的子节点。这些值可能是类标签,也可能是另一个数据字典。如果值是类标签,则该子节点是叶子节点;如果值是另一个数据字典,则子节点是一个判断节点,这种格式结构不断重复就构成了整棵树。

3.2绘制树形图

上面是程序输出的决策树,看起来十分别扭,非常不易于理解。决策树的主要优点就是直观易于理解,如果不能将其直观地显示出来,就无法发挥其优势。

文本注解绘制树节点

将书中的代码整合,实现程序如下:

#画图函数
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')                                                    #创建fig
    fig.clf()                                                                                #清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)                                #去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))                                            #获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))                                            #获取决策树层数
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;                                #x偏移
    plotTree(inTree, (0.5,1.0), '')                                                            #绘制决策树
    plt.show()                                                                                 #显示绘制结果    

# 获取决策树叶子结点的数目
def getNumLeafs(myTree):
    numLeafs = 0                                                #初始化叶子
    firstStr = next(iter(myTree))                                #python3中myTree.keys()返回的是dict_keys,不在是list,所以不
    secondDict = myTree[firstStr]                                #获取下一组字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

# 获取决策树的层数
def getTreeDepth(myTree):
    maxDepth = 0                                                #初始化决策树深度
    firstStr = next(iter(myTree))                                #python3中myTree.keys()返回的是dict_keys,不在是list,所以不
    secondDict = myTree[firstStr]                                #获取下一个字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth            #更新层数
    return maxDepth



#绘制节点
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    font =  FontProperties(fname=r"c:\windows\fonts\simhei.ttf", size=14)       #设置中文字体
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',    #绘制结点
        xytext=centerPt, textcoords='axes fraction',
        va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, fontproperties=font)

#标注有向边属性值
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]                                            #计算标注位置                 
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)


#绘制树
def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")                                        #设置结点格式
    leafNode = dict(boxstyle="round4", fc="0.8")                                            #设置叶结点格式
    numLeafs = getNumLeafs(myTree)                                                          #获取决策树叶结点数目,决定了树
    depth = getTreeDepth(myTree)                                                            #获取决策树层数
    firstStr = next(iter(myTree))                                                            #下个字典                      
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    #中心位置
    plotMidText(cntrPt, parentPt, nodeTxt)                                                    #标注有向边属性值
    plotNode(firstStr, cntrPt, parentPt, decisionNode)                                        #绘制结点
    secondDict = myTree[firstStr]                                                            #下一个字典,也就是继续绘制子结
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD                                        #y偏移
    for key in secondDict.keys():                               
        if type(secondDict[key]).__name__=='dict':                                            #测试该结点是否为字典,如果不
            plotTree(secondDict[key],cntrPt,str(key))                                        #不是叶结点,递归调用继续绘制
        else:                                                                                #如果是叶结点,绘制叶结点,并标
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

输出为:
在这里插入图片描述
对应的字典如下:

{'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}

对比非常直观,以图的形式表示出来,数据能能加清楚。

3.3测试和存储分类器

前面是如何创建决策树,并使用朋友桃花红函数库绘制树形图,下面就是对于决策树的应用。

使用决策树的分类函数

def classify(inputTree, featLabels, testVec):
    firstStr = next(iter(inputTree))                               
    secondDict = inputTree[firstStr]                               
    featIndex = featLabels.index(firstStr)                         
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, 
            else: classLabel = secondDict[key]
    return classLabel

dataSet, labels = createDataSet()
featLabels = []
myTree = createTree(dataSet, labels, featLabels)
testVec = [0,1]                                        #测试数据
result = classify(myTree, featLabels, testVec)

if result == 'yes':
    print('放贷')
if result == 'no':
    print('不放贷')

输出结果如下
在这里插入图片描述

决策树的存储

构造决策树是很耗时的任务,即使处理很小的数据集,如前面的样本数据,也要花费几秒的时间,如果数据集很大,将会耗费很多计算时间。因此,为了节省计算时间,最好能够在每次执行分类时调用巳经构造好的决策树。就需要对决策树进行存储。
存储读取代码实现:

def storeTree(inputTree, filename):
    with open(filename, 'wb') as fw:
        pickle.dump(inputTree, fw)

def grabTree(filename):
    fr = open(filename, 'rb')
    return pickle.load(fr)


myTree = {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
storeTree(myTree, 'classifierStorage.txt')

myTree_open = grabTree('classifierStorage.txt')
print(myTree_open)

输出结果:
在这里插入图片描述

3.4使用决策树预测隐形眼镜类型

数据网上找了一份,函数之前已经全部实现了,现在就是调用一下。
并没有那么简单,原来的程序在处理数据的分类标签为三种时,会出问题。不能直接使用。目前没有找到问题处在哪里,所以参考这个博客的代码,利用Python现有的库来输出。

运行以下代码:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from six import StringIO
from sklearn import tree
import pandas as pd
import numpy as np
import pydotplus
 
if __name__ == '__main__':
    with open('Ch03\lenses.txt', 'r') as fr:                                        #加载文件
        lenses = [inst.strip().split('\t') for inst in fr.readlines()]        #处理文件
    lenses_target = []                                                        #提取每组数据的类别,保存在列表里
    for each in lenses:
        lenses_target.append(each[-1])
    print(lenses_target)
 
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']            #特征标签       
    lenses_list = []                                                        #保存lenses数据的临时列表
    lenses_dict = {}                                                        #保存lenses数据的字典,用于生成pandas
    for each_label in lensesLabels:                                            #提取信息,生成字典
        for each in lenses:
            lenses_list.append(each[lensesLabels.index(each_label)])
        lenses_dict[each_label] = lenses_list
        lenses_list = []
    # print(lenses_dict)                                                        #打印字典信息
    lenses_pd = pd.DataFrame(lenses_dict)                                    #生成pandas.DataFrame
    # print(lenses_pd)                                                        #打印pandas.DataFrame
    le = LabelEncoder()                                                        #创建LabelEncoder()对象,用于序列化           
    for col in lenses_pd.columns:                                            #序列化
        lenses_pd[col] = le.fit_transform(lenses_pd[col])
    print(lenses_pd)                                                        #打印编码信息
 
    clf = tree.DecisionTreeClassifier(max_depth = 4)                        #创建DecisionTreeClassifier()类
    clf = clf.fit(lenses_pd.values.tolist(), lenses_target)                    #使用数据,构建决策树
    dot_data = StringIO()
    tree.export_graphviz(clf, out_file = dot_data,                            #绘制决策树
                        feature_names = lenses_pd.keys(),
                        class_names = clf.classes_,
                        filled=True, rounded=True,
                        special_characters=True)
    graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf("tree.pdf")                                                #保存绘制好的决策树,以PDF的形式存储

输出文件为:
在这里插入图片描述
运行的时候,缺什么就安装什么,就可以了。
右上角有个黑块,不知道哪里的问题

进行预测:

print(clf.predict([[1,1,1,0]]))                    #预测

输出结果如下:

['hard']

3.5小结

本章薛学习了决策树的相关概念,以及构造决策树相关的代码,如何利用数据来生成决策树,以及绘制决策树。最后学习了关于决策树的运用的例子,一个是分类,另外是使用决策树进行预测。最后了解了一下Python中现有的决策树相关函数。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值